maskrcnn_model.py 14.2 KB
Newer Older
Yeqing Li's avatar
Yeqing Li committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Yeqing Li's avatar
Yeqing Li committed
14

Abdullah Rashwan's avatar
Abdullah Rashwan committed
15
16
"""Mask R-CNN model."""

Xianzhi Du's avatar
Xianzhi Du committed
17
from typing import Any, List, Mapping, Optional, Union
Fan Yang's avatar
Fan Yang committed
18

Abdullah Rashwan's avatar
Abdullah Rashwan committed
19
20
21
# Import libraries
import tensorflow as tf

22
from official.vision.beta.ops import anchor
Abdullah Rashwan's avatar
Abdullah Rashwan committed
23
24
25
26
27
28
29
30
from official.vision.beta.ops import box_ops


@tf.keras.utils.register_keras_serializable(package='Vision')
class MaskRCNNModel(tf.keras.Model):
  """The Mask R-CNN model."""

  def __init__(self,
Fan Yang's avatar
Fan Yang committed
31
32
33
34
35
               backbone: tf.keras.Model,
               decoder: tf.keras.Model,
               rpn_head: tf.keras.layers.Layer,
               detection_head: tf.keras.layers.Layer,
               roi_generator: tf.keras.layers.Layer,
Xianzhi Du's avatar
Xianzhi Du committed
36
37
               roi_sampler: Union[tf.keras.layers.Layer,
                                  List[tf.keras.layers.Layer]],
Fan Yang's avatar
Fan Yang committed
38
39
40
41
42
               roi_aligner: tf.keras.layers.Layer,
               detection_generator: tf.keras.layers.Layer,
               mask_head: Optional[tf.keras.layers.Layer] = None,
               mask_sampler: Optional[tf.keras.layers.Layer] = None,
               mask_roi_aligner: Optional[tf.keras.layers.Layer] = None,
Xianzhi Du's avatar
Xianzhi Du committed
43
44
               class_agnostic_bbox_pred: bool = False,
               cascade_class_ensemble: bool = False,
45
46
47
48
49
               min_level: Optional[int] = None,
               max_level: Optional[int] = None,
               num_scales: Optional[int] = None,
               aspect_ratios: Optional[List[float]] = None,
               anchor_size: Optional[float] = None,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
50
51
52
53
54
55
56
57
58
               **kwargs):
    """Initializes the Mask R-CNN model.

    Args:
      backbone: `tf.keras.Model`, the backbone network.
      decoder: `tf.keras.Model`, the decoder network.
      rpn_head: the RPN head.
      detection_head: the detection head.
      roi_generator: the ROI generator.
Xianzhi Du's avatar
Xianzhi Du committed
59
60
      roi_sampler: a single ROI sampler or a list of ROI samplers for cascade
        detection heads.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
61
62
63
64
65
      roi_aligner: the ROI aligner.
      detection_generator: the detection generator.
      mask_head: the mask head.
      mask_sampler: the mask sampler.
      mask_roi_aligner: the ROI alginer for mask prediction.
Xianzhi Du's avatar
Xianzhi Du committed
66
67
68
69
      class_agnostic_bbox_pred: if True, perform class agnostic bounding box
        prediction. Needs to be `True` for Cascade RCNN models.
      cascade_class_ensemble: if True, ensemble classification scores over
        all detection heads.
70
71
72
73
74
75
76
77
78
79
80
      min_level: Minimum level in output feature maps.
      max_level: Maximum level in output feature maps.
      num_scales: A number representing intermediate scales added
        on each level. For instances, num_scales=2 adds one additional
        intermediate anchor scales [2^0, 2^0.5] on each level.
      aspect_ratios: A list representing the aspect raito
        anchors added on each level. The number indicates the ratio of width to
        height. For instances, aspect_ratios=[1.0, 2.0, 0.5] adds three anchors
        on each scale level.
      anchor_size: A number representing the scale of size of the base
        anchor to the feature stride 2^level.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
      **kwargs: keyword arguments to be passed.
    """
    super(MaskRCNNModel, self).__init__(**kwargs)
    self._config_dict = {
        'backbone': backbone,
        'decoder': decoder,
        'rpn_head': rpn_head,
        'detection_head': detection_head,
        'roi_generator': roi_generator,
        'roi_sampler': roi_sampler,
        'roi_aligner': roi_aligner,
        'detection_generator': detection_generator,
        'mask_head': mask_head,
        'mask_sampler': mask_sampler,
        'mask_roi_aligner': mask_roi_aligner,
Xianzhi Du's avatar
Xianzhi Du committed
96
97
        'class_agnostic_bbox_pred': class_agnostic_bbox_pred,
        'cascade_class_ensemble': cascade_class_ensemble,
98
99
100
101
102
        'min_level': min_level,
        'max_level': max_level,
        'num_scales': num_scales,
        'aspect_ratios': aspect_ratios,
        'anchor_size': anchor_size,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
103
104
105
106
107
108
    }
    self.backbone = backbone
    self.decoder = decoder
    self.rpn_head = rpn_head
    self.detection_head = detection_head
    self.roi_generator = roi_generator
Xianzhi Du's avatar
Xianzhi Du committed
109
110
111
112
113
114
115
116
    if not isinstance(roi_sampler, (list, tuple)):
      self.roi_sampler = [roi_sampler]
    else:
      self.roi_sampler = roi_sampler
    if len(self.roi_sampler) > 1 and not class_agnostic_bbox_pred:
      raise ValueError(
          '`class_agnostic_bbox_pred` needs to be True if multiple detection heads are specified.'
      )
Abdullah Rashwan's avatar
Abdullah Rashwan committed
117
118
119
120
121
122
123
124
125
126
    self.roi_aligner = roi_aligner
    self.detection_generator = detection_generator
    self._include_mask = mask_head is not None
    self.mask_head = mask_head
    if self._include_mask and mask_sampler is None:
      raise ValueError('`mask_sampler` is not provided in Mask R-CNN.')
    self.mask_sampler = mask_sampler
    if self._include_mask and mask_roi_aligner is None:
      raise ValueError('`mask_roi_aligner` is not provided in Mask R-CNN.')
    self.mask_roi_aligner = mask_roi_aligner
Xianzhi Du's avatar
Xianzhi Du committed
127
128
129
130
131
132
133
    # Weights for the regression losses for each FRCNN layer.
    # TODO(xianzhi): Make the weights configurable.
    self._cascade_layer_to_weights = [
        [10.0, 10.0, 5.0, 5.0],
        [20.0, 20.0, 10.0, 10.0],
        [30.0, 30.0, 15.0, 15.0],
    ]
Abdullah Rashwan's avatar
Abdullah Rashwan committed
134
135

  def call(self,
Fan Yang's avatar
Fan Yang committed
136
137
138
139
140
141
142
           images: tf.Tensor,
           image_shape: tf.Tensor,
           anchor_boxes: Optional[Mapping[str, tf.Tensor]] = None,
           gt_boxes: tf.Tensor = None,
           gt_classes: tf.Tensor = None,
           gt_masks: tf.Tensor = None,
           training: bool = None) -> Mapping[str, tf.Tensor]:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
    model_outputs = {}

    # Feature extraction.
    features = self.backbone(images)
    if self.decoder:
      features = self.decoder(features)

    # Region proposal network.
    rpn_scores, rpn_boxes = self.rpn_head(features)

    model_outputs.update({
        'rpn_boxes': rpn_boxes,
        'rpn_scores': rpn_scores
    })

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
    # Generate anchor boxes for this batch if not provided.
    if anchor_boxes is None:
      _, image_height, image_width, _ = images.get_shape().as_list()
      anchor_boxes = anchor.Anchor(
          min_level=self._config_dict['min_level'],
          max_level=self._config_dict['max_level'],
          num_scales=self._config_dict['num_scales'],
          aspect_ratios=self._config_dict['aspect_ratios'],
          anchor_size=self._config_dict['anchor_size'],
          image_size=(image_height, image_width)).multilevel_boxes
      for l in anchor_boxes:
        anchor_boxes[l] = tf.tile(
            tf.expand_dims(anchor_boxes[l], axis=0),
            [tf.shape(images)[0], 1, 1, 1])

Abdullah Rashwan's avatar
Abdullah Rashwan committed
173
    # Generate RoIs.
Xianzhi Du's avatar
Xianzhi Du committed
174
175
    current_rois, _ = self.roi_generator(rpn_boxes, rpn_scores, anchor_boxes,
                                         image_shape, training)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
176

Xianzhi Du's avatar
Xianzhi Du committed
177
178
179
180
181
182
183
    next_rois = current_rois
    all_class_outputs = []
    for cascade_num in range(len(self.roi_sampler)):
      # In cascade RCNN we want the higher layers to have different regression
      # weights as the predicted deltas become smaller and smaller.
      regression_weights = self._cascade_layer_to_weights[cascade_num]
      current_rois = next_rois
Abdullah Rashwan's avatar
Abdullah Rashwan committed
184

Xianzhi Du's avatar
Xianzhi Du committed
185
186
187
188
189
190
191
192
193
194
195
196
      (class_outputs, box_outputs, model_outputs, matched_gt_boxes,
       matched_gt_classes, matched_gt_indices,
       current_rois) = self._run_frcnn_head(
           features=features,
           rois=current_rois,
           gt_boxes=gt_boxes,
           gt_classes=gt_classes,
           training=training,
           model_outputs=model_outputs,
           layer_num=cascade_num,
           regression_weights=regression_weights)
      all_class_outputs.append(class_outputs)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
197

Xianzhi Du's avatar
Xianzhi Du committed
198
199
200
201
202
203
204
205
      # Generate ROIs for the next cascade head if there is any.
      if cascade_num < len(self.roi_sampler) - 1:
        next_rois = box_ops.decode_boxes(
            tf.cast(box_outputs, tf.float32),
            current_rois,
            weights=regression_weights)
        next_rois = box_ops.clip_boxes(next_rois,
                                       tf.expand_dims(image_shape, axis=1))
Abdullah Rashwan's avatar
Abdullah Rashwan committed
206

Xianzhi Du's avatar
Xianzhi Du committed
207
208
209
    if not training:
      if self._config_dict['cascade_class_ensemble']:
        class_outputs = tf.add_n(all_class_outputs) / len(all_class_outputs)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
210
211

      detections = self.detection_generator(
Xianzhi Du's avatar
Xianzhi Du committed
212
213
214
215
216
217
          box_outputs,
          class_outputs,
          current_rois,
          image_shape,
          regression_weights,
          bbox_per_class=(not self._config_dict['class_agnostic_bbox_pred']))
Abdullah Rashwan's avatar
Abdullah Rashwan committed
218
      model_outputs.update({
Fan Yang's avatar
Fan Yang committed
219
220
          'cls_outputs': class_outputs,
          'box_outputs': box_outputs,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
221
      })
Fan Yang's avatar
Fan Yang committed
222
223
224
225
226
227
228
229
230
231
232
233
      if self.detection_generator.get_config()['apply_nms']:
        model_outputs.update({
            'detection_boxes': detections['detection_boxes'],
            'detection_scores': detections['detection_scores'],
            'detection_classes': detections['detection_classes'],
            'num_detections': detections['num_detections']
        })
      else:
        model_outputs.update({
            'decoded_boxes': detections['decoded_boxes'],
            'decoded_box_scores': detections['decoded_box_scores']
        })
Abdullah Rashwan's avatar
Abdullah Rashwan committed
234
235
236
237
238

    if not self._include_mask:
      return model_outputs

    if training:
Xianzhi Du's avatar
Xianzhi Du committed
239
240
241
      current_rois, roi_classes, roi_masks = self.mask_sampler(
          current_rois, matched_gt_boxes, matched_gt_classes,
          matched_gt_indices, gt_masks)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
242
243
244
245
246
247
248
      roi_masks = tf.stop_gradient(roi_masks)

      model_outputs.update({
          'mask_class_targets': roi_classes,
          'mask_targets': roi_masks,
      })
    else:
Xianzhi Du's avatar
Xianzhi Du committed
249
      current_rois = model_outputs['detection_boxes']
Abdullah Rashwan's avatar
Abdullah Rashwan committed
250
251
252
      roi_classes = model_outputs['detection_classes']

    # Mask RoI align.
Xianzhi Du's avatar
Xianzhi Du committed
253
    mask_roi_features = self.mask_roi_aligner(features, current_rois)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
254
255
256

    # Mask head.
    raw_masks = self.mask_head([mask_roi_features, roi_classes])
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
257

Abdullah Rashwan's avatar
Abdullah Rashwan committed
258
259
260
261
262
263
264
265
266
267
    if training:
      model_outputs.update({
          'mask_outputs': raw_masks,
      })
    else:
      model_outputs.update({
          'detection_masks': tf.math.sigmoid(raw_masks),
      })
    return model_outputs

Xianzhi Du's avatar
Xianzhi Du committed
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
  def _run_frcnn_head(self, features, rois, gt_boxes, gt_classes, training,
                      model_outputs, layer_num, regression_weights):
    """Runs the frcnn head that does both class and box prediction.

    Args:
      features: `list` of features from the feature extractor.
      rois: `list` of current rois that will be used to predict bbox refinement
        and classes from.
      gt_boxes: a tensor with a shape of [batch_size, MAX_NUM_INSTANCES, 4].
        This tensor might have paddings with a negative value.
      gt_classes: [batch_size, MAX_INSTANCES] representing the groundtruth box
        classes. It is padded with -1s to indicate the invalid classes.
      training: `bool`, if model is training or being evaluated.
      model_outputs: `dict`, used for storing outputs used for eval and losses.
      layer_num: `int`, the current frcnn layer in the cascade.
      regression_weights: `list`, weights used for l1 loss in bounding box
        regression.

    Returns:
      class_outputs: Class predictions for rois.
      box_outputs: Box predictions for rois. These are formatted for the
        regression loss and need to be converted before being used as rois
        in the next stage.
      model_outputs: Updated dict with predictions used for losses and eval.
      matched_gt_boxes: If `is_training` is true, then these give the gt box
        location of its positive match.
      matched_gt_classes: If `is_training` is true, then these give the gt class
         of the predicted box.
      matched_gt_boxes: If `is_training` is true, then these give the box
        location of its positive match.
      matched_gt_indices: If `is_training` is true, then gives the index of
        the positive box match. Used for mask prediction.
      rois: The sampled rois used for this layer.
    """
    # Only used during training.
    matched_gt_boxes, matched_gt_classes, matched_gt_indices = (None, None,
                                                                None)
305
    if training and gt_boxes is not None:
Xianzhi Du's avatar
Xianzhi Du committed
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
      rois = tf.stop_gradient(rois)

      current_roi_sampler = self.roi_sampler[layer_num]
      rois, matched_gt_boxes, matched_gt_classes, matched_gt_indices = (
          current_roi_sampler(rois, gt_boxes, gt_classes))
      # Create bounding box training targets.
      box_targets = box_ops.encode_boxes(
          matched_gt_boxes, rois, weights=regression_weights)
      # If the target is background, the box target is set to all 0s.
      box_targets = tf.where(
          tf.tile(
              tf.expand_dims(tf.equal(matched_gt_classes, 0), axis=-1),
              [1, 1, 4]), tf.zeros_like(box_targets), box_targets)
      model_outputs.update({
          'class_targets_{}'.format(layer_num)
          if layer_num else 'class_targets':
              matched_gt_classes,
          'box_targets_{}'.format(layer_num) if layer_num else 'box_targets':
              box_targets,
      })

    # Get roi features.
    roi_features = self.roi_aligner(features, rois)

    # Run frcnn head to get class and bbox predictions.
    class_outputs, box_outputs = self.detection_head(roi_features)

    model_outputs.update({
        'class_outputs_{}'.format(layer_num) if layer_num else 'class_outputs':
            class_outputs,
        'box_outputs_{}'.format(layer_num) if layer_num else 'box_outputs':
            box_outputs,
    })
    return (class_outputs, box_outputs, model_outputs, matched_gt_boxes,
            matched_gt_classes, matched_gt_indices, rois)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
342
  @property
Fan Yang's avatar
Fan Yang committed
343
344
  def checkpoint_items(
      self) -> Mapping[str, Union[tf.keras.Model, tf.keras.layers.Layer]]:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
345
346
347
348
349
350
351
352
353
354
355
356
    """Returns a dictionary of items to be additionally checkpointed."""
    items = dict(
        backbone=self.backbone,
        rpn_head=self.rpn_head,
        detection_head=self.detection_head)
    if self.decoder is not None:
      items.update(decoder=self.decoder)
    if self._include_mask:
      items.update(mask_head=self.mask_head)

    return items

Fan Yang's avatar
Fan Yang committed
357
  def get_config(self) -> Mapping[str, Any]:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
358
359
360
361
362
    return self._config_dict

  @classmethod
  def from_config(cls, config):
    return cls(**config)