question_answering.py 18.5 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Question answering task."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
17
18
import json
import os
Allen Wang's avatar
Allen Wang committed
19
from typing import List, Optional
20

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
21
from absl import logging
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
22
import dataclasses
23
import orbit
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
24
25
26
import tensorflow as tf

from official.core import base_task
27
from official.core import config_definitions as cfg
Abdullah Rashwan's avatar
Abdullah Rashwan committed
28
from official.core import task_factory
Hongkun Yu's avatar
Hongkun Yu committed
29
from official.modeling.hyperparams import base_config
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
30
31
32
from official.nlp.bert import squad_evaluate_v1_1
from official.nlp.bert import squad_evaluate_v2_0
from official.nlp.bert import tokenization
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
33
from official.nlp.configs import encoders
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
34
from official.nlp.data import data_loader_factory
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
35
36
from official.nlp.data import squad_lib as squad_lib_wp
from official.nlp.data import squad_lib_sp
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
37
from official.nlp.modeling import models
Chen Chen's avatar
Chen Chen committed
38
from official.nlp.tasks import utils
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
39
40


Hongkun Yu's avatar
Hongkun Yu committed
41
42
43
@dataclasses.dataclass
class ModelConfig(base_config.Config):
  """A base span labeler configuration."""
Hongkun Yu's avatar
Hongkun Yu committed
44
  encoder: encoders.EncoderConfig = encoders.EncoderConfig()
Hongkun Yu's avatar
Hongkun Yu committed
45
46


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
47
48
49
50
51
52
@dataclasses.dataclass
class QuestionAnsweringConfig(cfg.TaskConfig):
  """The model config."""
  # At most one of `init_checkpoint` and `hub_module_url` can be specified.
  init_checkpoint: str = ''
  hub_module_url: str = ''
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
53
54
55
  n_best_size: int = 20
  max_answer_length: int = 30
  null_score_diff_threshold: float = 0.0
Hongkun Yu's avatar
Hongkun Yu committed
56
  model: ModelConfig = ModelConfig()
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
57
58
59
60
  train_data: cfg.DataConfig = cfg.DataConfig()
  validation_data: cfg.DataConfig = cfg.DataConfig()


Allen Wang's avatar
Allen Wang committed
61
62
63
64
65
66
67
68
69
70
71
@dataclasses.dataclass
class RawAggregatedResult:
  """Raw representation for SQuAD predictions."""
  unique_id: int
  start_logits: List[float]
  end_logits: List[float]
  start_indexes: Optional[List[int]] = None
  end_indexes: Optional[List[int]] = None
  class_logits: Optional[float] = None


Abdullah Rashwan's avatar
Abdullah Rashwan committed
72
@task_factory.register_task_cls(QuestionAnsweringConfig)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
73
class QuestionAnsweringTask(base_task.Task):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
74
  """Task object for question answering."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
75

Hongkun Yu's avatar
Hongkun Yu committed
76
77
  def __init__(self, params: cfg.TaskConfig, logging_dir=None, name=None):
    super().__init__(params, logging_dir, name=name)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
78

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
79
80
81
82
83
84
85
86
    if params.validation_data.tokenization == 'WordPiece':
      self.squad_lib = squad_lib_wp
    elif params.validation_data.tokenization == 'SentencePiece':
      self.squad_lib = squad_lib_sp
    else:
      raise ValueError('Unsupported tokenization method: {}'.format(
          params.validation_data.tokenization))

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
87
88
89
90
    if params.validation_data.input_path:
      self._tf_record_input_path, self._eval_examples, self._eval_features = (
          self._preprocess_eval_data(params.validation_data))

91
92
93
94
  def set_preprocessed_eval_input_path(self, eval_input_path):
    """Sets the path to the preprocessed eval data."""
    self._tf_record_input_path = eval_input_path

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
95
  def build_model(self):
Hongkun Yu's avatar
Hongkun Yu committed
96
97
98
99
    if self.task_config.hub_module_url and self.task_config.init_checkpoint:
      raise ValueError('At most one of `hub_module_url` and '
                       '`init_checkpoint` can be specified.')
    if self.task_config.hub_module_url:
Chen Chen's avatar
Chen Chen committed
100
101
      encoder_network = utils.get_encoder_from_hub(
          self.task_config.hub_module_url)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
102
    else:
Hongkun Yu's avatar
Hongkun Yu committed
103
104
      encoder_network = encoders.build_encoder(self.task_config.model.encoder)
    encoder_cfg = self.task_config.model.encoder.get()
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
105
106
107
    return models.BertSpanLabeler(
        network=encoder_network,
        initializer=tf.keras.initializers.TruncatedNormal(
Hongkun Yu's avatar
Hongkun Yu committed
108
            stddev=encoder_cfg.initializer_range))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
109
110
111
112
113
114
115
116
117
118
119

  def build_losses(self, labels, model_outputs, aux_losses=None) -> tf.Tensor:
    start_positions = labels['start_positions']
    end_positions = labels['end_positions']
    start_logits, end_logits = model_outputs

    start_loss = tf.keras.losses.sparse_categorical_crossentropy(
        start_positions,
        tf.cast(start_logits, dtype=tf.float32),
        from_logits=True)
    end_loss = tf.keras.losses.sparse_categorical_crossentropy(
Hongkun Yu's avatar
Hongkun Yu committed
120
        end_positions, tf.cast(end_logits, dtype=tf.float32), from_logits=True)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
121
122
123
124

    loss = (tf.reduce_mean(start_loss) + tf.reduce_mean(end_loss)) / 2
    return loss

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
125
126
127
128
129
130
  def _preprocess_eval_data(self, params):
    eval_examples = self.squad_lib.read_squad_examples(
        input_file=params.input_path,
        is_training=False,
        version_2_with_negative=params.version_2_with_negative)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
131
132
133
134
135
    temp_file_path = params.input_preprocessed_data_path or self.logging_dir
    if not temp_file_path:
      raise ValueError('You must specify a temporary directory, either in '
                       'params.input_preprocessed_data_path or logging_dir to '
                       'store intermediate evaluation TFRecord data.')
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
    eval_writer = self.squad_lib.FeatureWriter(
        filename=os.path.join(temp_file_path, 'eval.tf_record'),
        is_training=False)
    eval_features = []

    def _append_feature(feature, is_padding):
      if not is_padding:
        eval_features.append(feature)
      eval_writer.process_feature(feature)

    kwargs = dict(
        examples=eval_examples,
        max_seq_length=params.seq_length,
        doc_stride=params.doc_stride,
        max_query_length=params.query_length,
        is_training=False,
        output_fn=_append_feature,
        batch_size=params.global_batch_size)
Chen Chen's avatar
Chen Chen committed
154

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
155
156
157
    if params.tokenization == 'SentencePiece':
      # squad_lib_sp requires one more argument 'do_lower_case'.
      kwargs['do_lower_case'] = params.do_lower_case
Chen Chen's avatar
Chen Chen committed
158
159
      kwargs['tokenizer'] = tokenization.FullSentencePieceTokenizer(
          sp_model_file=params.vocab_file)
Allen Wang's avatar
Allen Wang committed
160
      kwargs['xlnet_format'] = self.task_config.model.encoder.type == 'xlnet'
Chen Chen's avatar
Chen Chen committed
161
162
163
164
165
    elif params.tokenization == 'WordPiece':
      kwargs['tokenizer'] = tokenization.FullTokenizer(
          vocab_file=params.vocab_file, do_lower_case=params.do_lower_case)
    else:
      raise ValueError('Unexpected tokenization: %s' % params.tokenization)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
166
167
168
169
170
171
172
173
174
175
176
177

    eval_dataset_size = self.squad_lib.convert_examples_to_features(**kwargs)
    eval_writer.close()

    logging.info('***** Evaluation input stats *****')
    logging.info('  Num orig examples = %d', len(eval_examples))
    logging.info('  Num split examples = %d', len(eval_features))
    logging.info('  Batch size = %d', params.global_batch_size)
    logging.info('  Dataset size = %d', eval_dataset_size)

    return eval_writer.filename, eval_examples, eval_features

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
178
179
180
  def build_inputs(self, params, input_context=None):
    """Returns tf.data.Dataset for sentence_prediction task."""
    if params.input_path == 'dummy':
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
181
      # Dummy training data for unit test.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
182
183
184
185
186
187
188
189
      def dummy_data(_):
        dummy_ids = tf.zeros((1, params.seq_length), dtype=tf.int32)
        x = dict(
            input_word_ids=dummy_ids,
            input_mask=dummy_ids,
            input_type_ids=dummy_ids)
        y = dict(
            start_positions=tf.constant(0, dtype=tf.int32),
Allen Wang's avatar
Allen Wang committed
190
191
            end_positions=tf.constant(1, dtype=tf.int32),
            is_impossible=tf.constant(0, dtype=tf.int32))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
192
193
194
195
196
197
198
199
        return (x, y)

      dataset = tf.data.Dataset.range(1)
      dataset = dataset.repeat()
      dataset = dataset.map(
          dummy_data, num_parallel_calls=tf.data.experimental.AUTOTUNE)
      return dataset

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
200
    if params.is_training:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
201
      dataloader_params = params
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
202
    else:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
203
      input_path = self._tf_record_input_path
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
204
      dataloader_params = params.replace(input_path=input_path)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
205

Hongkun Yu's avatar
Hongkun Yu committed
206
207
    return data_loader_factory.get_data_loader(dataloader_params).load(
        input_context)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222

  def build_metrics(self, training=None):
    del training
    # TODO(lehou): a list of metrics doesn't work the same as in compile/fit.
    metrics = [
        tf.keras.metrics.SparseCategoricalAccuracy(
            name='start_position_accuracy'),
        tf.keras.metrics.SparseCategoricalAccuracy(
            name='end_position_accuracy'),
    ]
    return metrics

  def process_metrics(self, metrics, labels, model_outputs):
    metrics = dict([(metric.name, metric) for metric in metrics])
    start_logits, end_logits = model_outputs
Hongkun Yu's avatar
Hongkun Yu committed
223
224
225
226
    metrics['start_position_accuracy'].update_state(labels['start_positions'],
                                                    start_logits)
    metrics['end_position_accuracy'].update_state(labels['end_positions'],
                                                  end_logits)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
227
228
229
230
231

  def process_compiled_metrics(self, compiled_metrics, labels, model_outputs):
    start_logits, end_logits = model_outputs
    compiled_metrics.update_state(
        y_true=labels,  # labels has keys 'start_positions' and 'end_positions'.
Hongkun Yu's avatar
Hongkun Yu committed
232
233
234
235
        y_pred={
            'start_positions': start_logits,
            'end_positions': end_logits
        })
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
236

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
  def validation_step(self, inputs, model: tf.keras.Model, metrics=None):
    features, _ = inputs
    unique_ids = features.pop('unique_ids')
    model_outputs = self.inference_step(features, model)
    start_logits, end_logits = model_outputs
    logs = {
        self.loss: 0.0,  # TODO(lehou): compute the real validation loss.
        'unique_ids': unique_ids,
        'start_logits': start_logits,
        'end_logits': end_logits,
    }
    return logs

  def aggregate_logs(self, state=None, step_outputs=None):
    assert step_outputs is not None, 'Got no logs from self.validation_step.'
    if state is None:
      state = []

Allen Wang's avatar
Allen Wang committed
255
256
257
258
259
260
261
262
263
264
265
    for outputs in zip(step_outputs['unique_ids'],
                       step_outputs['start_logits'],
                       step_outputs['end_logits']):
      numpy_values = [
          output.numpy() for output in outputs if output is not None]

      for values in zip(*numpy_values):
        state.append(RawAggregatedResult(
            unique_id=values[0],
            start_logits=values[1],
            end_logits=values[2]))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
    return state

  def reduce_aggregated_logs(self, aggregated_logs):
    all_predictions, _, scores_diff = (
        self.squad_lib.postprocess_output(
            self._eval_examples,
            self._eval_features,
            aggregated_logs,
            self.task_config.n_best_size,
            self.task_config.max_answer_length,
            self.task_config.validation_data.do_lower_case,
            version_2_with_negative=(
                self.task_config.validation_data.version_2_with_negative),
            null_score_diff_threshold=(
                self.task_config.null_score_diff_threshold),
            verbose=False))

Hongkun Yu's avatar
Hongkun Yu committed
283
284
    with tf.io.gfile.GFile(self.task_config.validation_data.input_path,
                           'r') as reader:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
285
286
287
      dataset_json = json.load(reader)
      pred_dataset = dataset_json['data']
    if self.task_config.validation_data.version_2_with_negative:
Hongkun Yu's avatar
Hongkun Yu committed
288
289
      eval_metrics = squad_evaluate_v2_0.evaluate(pred_dataset, all_predictions,
                                                  scores_diff)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
290
291
292
293
294
295
296
297
      # Filter out useless metrics, such as start_position_accuracy that
      # we did not actually compute.
      eval_metrics = {
          'exact_match': eval_metrics['final_exact'],
          'exact_match_threshold': eval_metrics['final_exact_thresh'],
          'final_f1': eval_metrics['final_f1'] / 100.0,  # scale back to [0, 1].
          'f1_threshold': eval_metrics['final_f1_thresh'],
          'has_answer_exact_match': eval_metrics['HasAns_exact'],
Hongkun Yu's avatar
Hongkun Yu committed
298
299
          'has_answer_f1': eval_metrics['HasAns_f1']
      }
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
300
301
    else:
      eval_metrics = squad_evaluate_v1_1.evaluate(pred_dataset, all_predictions)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
302
303
      # Filter out useless metrics, such as start_position_accuracy that
      # we did not actually compute.
Hongkun Yu's avatar
Hongkun Yu committed
304
305
306
307
      eval_metrics = {
          'exact_match': eval_metrics['exact_match'],
          'final_f1': eval_metrics['final_f1']
      }
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
308
    return eval_metrics
309
310


Allen Wang's avatar
Allen Wang committed
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
@dataclasses.dataclass
class XLNetQuestionAnsweringConfig(QuestionAnsweringConfig):
  """The config for the XLNet variation of QuestionAnswering."""
  pass


@task_factory.register_task_cls(XLNetQuestionAnsweringConfig)
class XLNetQuestionAnsweringTask(QuestionAnsweringTask):
  """XLNet variant of the Question Answering Task.

  The main differences include:
    - The encoder is an `XLNetBase` class.
    - The `SpanLabeling` head is an instance of `XLNetSpanLabeling` which
      predicts start/end positions and impossibility score. During inference,
      it predicts the top N scores and indexes.
  """

  def build_model(self):
    if self.task_config.hub_module_url and self.task_config.init_checkpoint:
      raise ValueError('At most one of `hub_module_url` and '
                       '`init_checkpoint` can be specified.')
    if self.task_config.hub_module_url:
      encoder_network = utils.get_encoder_from_hub(
          self.task_config.hub_module_url)
    else:
      encoder_network = encoders.build_encoder(self.task_config.model.encoder)
    encoder_cfg = self.task_config.model.encoder.get()
    return models.XLNetSpanLabeler(
        network=encoder_network,
        start_n_top=self.task_config.n_best_size,
        end_n_top=self.task_config.n_best_size,
        initializer=tf.keras.initializers.RandomNormal(
            stddev=encoder_cfg.initializer_range))

  def build_losses(self, labels, model_outputs, aux_losses=None) -> tf.Tensor:
    start_positions = labels['start_positions']
    end_positions = labels['end_positions']
    is_impossible = labels['is_impossible']
    is_impossible = tf.cast(tf.reshape(is_impossible, [-1]), tf.float32)

    start_logits = model_outputs['start_logits']
    end_logits = model_outputs['end_logits']
    class_logits = model_outputs['class_logits']

    start_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
        start_positions, start_logits)
    end_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
        end_positions, end_logits)
    is_impossible_loss = tf.keras.losses.binary_crossentropy(
        is_impossible, class_logits, from_logits=True)

    loss = (tf.reduce_mean(start_loss) + tf.reduce_mean(end_loss)) / 2
    loss += tf.reduce_mean(is_impossible_loss) / 2
    return loss

  def process_metrics(self, metrics, labels, model_outputs):
    metrics = dict([(metric.name, metric) for metric in metrics])
    start_logits = model_outputs['start_logits']
    end_logits = model_outputs['end_logits']
    metrics['start_position_accuracy'].update_state(labels['start_positions'],
                                                    start_logits)
    metrics['end_position_accuracy'].update_state(labels['end_positions'],
                                                  end_logits)

  def process_compiled_metrics(self, compiled_metrics, labels, model_outputs):
    start_logits = model_outputs['start_logits']
    end_logits = model_outputs['end_logits']
    compiled_metrics.update_state(
        y_true=labels,  # labels has keys 'start_positions' and 'end_positions'.
        y_pred={
            'start_positions': start_logits,
            'end_positions': end_logits,
        })

  def validation_step(self, inputs, model: tf.keras.Model, metrics=None):
    features, _ = inputs
    unique_ids = features.pop('unique_ids')
    model_outputs = self.inference_step(features, model)
    start_top_predictions = model_outputs['start_top_predictions']
    end_top_predictions = model_outputs['end_top_predictions']
    start_indexes = model_outputs['start_top_index']
    end_indexes = model_outputs['end_top_index']
    class_logits = model_outputs['class_logits']

    logs = {
        self.loss: 0.0,  # TODO(lehou): compute the real validation loss.
        'unique_ids': unique_ids,
        'start_top_predictions': start_top_predictions,
        'end_top_predictions': end_top_predictions,
        'start_indexes': start_indexes,
        'end_indexes': end_indexes,
        'class_logits': class_logits,
    }
    return logs

  def aggregate_logs(self, state=None, step_outputs=None):
    assert step_outputs is not None, 'Got no logs from self.validation_step.'
    if state is None:
      state = []

    for outputs in zip(step_outputs['unique_ids'],
                       step_outputs['start_top_predictions'],
                       step_outputs['end_top_predictions'],
                       step_outputs['start_indexes'],
                       step_outputs['end_indexes'],
                       step_outputs['class_logits']):
      numpy_values = [
          output.numpy() for output in outputs]

      for (unique_id, start_top_predictions, end_top_predictions, start_indexes,
           end_indexes, class_logits) in zip(*numpy_values):
        state.append(RawAggregatedResult(
            unique_id=unique_id,
            start_logits=start_top_predictions.tolist(),
            end_logits=end_top_predictions.tolist(),
            start_indexes=start_indexes.tolist(),
            end_indexes=end_indexes.tolist(),
            class_logits=class_logits))
    return state


432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
def predict(task: QuestionAnsweringTask, params: cfg.DataConfig,
            model: tf.keras.Model):
  """Predicts on the input data.

  Args:
    task: A `QuestionAnsweringTask` object.
    params: A `cfg.DataConfig` object.
    model: A keras.Model.

  Returns:
    A tuple of `all_predictions`, `all_nbest` and `scores_diff`, which
      are dict and can be written to json files including prediction json file,
      nbest json file and null_odds json file.
  """
  tf_record_input_path, eval_examples, eval_features = (
      task._preprocess_eval_data(params))  # pylint: disable=protected-access

  # `tf_record_input_path` will overwrite `params.input_path`,
  # when `task.buid_inputs()` is called.
  task.set_preprocessed_eval_input_path(tf_record_input_path)

  def predict_step(inputs):
    """Replicated prediction calculation."""
    return task.validation_step(inputs, model)

  dataset = orbit.utils.make_distributed_dataset(tf.distribute.get_strategy(),
                                                 task.build_inputs, params)
  aggregated_outputs = utils.predict(predict_step, task.aggregate_logs, dataset)

  all_predictions, all_nbest, scores_diff = (
      task.squad_lib.postprocess_output(
          eval_examples,
          eval_features,
          aggregated_outputs,
          task.task_config.n_best_size,
          task.task_config.max_answer_length,
          task.task_config.validation_data.do_lower_case,
          version_2_with_negative=(params.version_2_with_negative),
          null_score_diff_threshold=task.task_config.null_score_diff_threshold,
          verbose=False))
  return all_predictions, all_nbest, scores_diff