"llama/patches/0006-add-mllama-support.patch" did not exist on "369de832cdca7680c8f50ba196d39172a895fcad"
transformer.py 18 KB
Newer Older
Hongkun Yu's avatar
Hongkun Yu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Keras-based transformer block layer."""
16
# pylint: disable=g-classes-have-attributes
Hongkun Yu's avatar
Hongkun Yu committed
17
18
19
20
21
from __future__ import absolute_import
from __future__ import division
# from __future__ import google_type_annotations
from __future__ import print_function

Chen Chen's avatar
Chen Chen committed
22
import gin
Hongkun Yu's avatar
Hongkun Yu committed
23
24
25
import tensorflow as tf

from official.nlp.modeling.layers import attention
26
from official.nlp.modeling.layers import multi_channel_attention
27
from official.nlp.modeling.layers.util import tf_function_if_eager
Hongkun Yu's avatar
Hongkun Yu committed
28
29
30
31
32
33
34
35
36


@tf.keras.utils.register_keras_serializable(package="Text")
class Transformer(tf.keras.layers.Layer):
  """Transformer layer.

  This layer implements the Transformer from "Attention Is All You Need".
  (https://arxiv.org/abs/1706.03762).

37
  Arguments:
Hongkun Yu's avatar
Hongkun Yu committed
38
39
40
41
42
    num_attention_heads: Number of attention heads.
    intermediate_size: Size of the intermediate layer.
    intermediate_activation: Activation for the intermediate layer.
    dropout_rate: Dropout probability for the post-attention and output dropout.
    attention_dropout_rate: Dropout probability for within the attention layer.
43
44
    output_range: the sequence output range, [0, output_range) by slicing the
      target sequence. `None` means the target sequence is not sliced.
Hongkun Yu's avatar
Hongkun Yu committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
    kernel_initializer: Initializer for dense layer kernels.
    bias_initializer: Initializer for dense layer biases.
    kernel_regularizer: Regularizer for dense layer kernels.
    bias_regularizer: Regularizer for dense layer biases.
    activity_regularizer: Regularizer for dense layer activity.
    kernel_constraint: Constraint for dense layer kernels.
    bias_constraint: Constraint for dense layer kernels.
  """

  def __init__(self,
               num_attention_heads,
               intermediate_size,
               intermediate_activation,
               dropout_rate=0.0,
               attention_dropout_rate=0.0,
60
               output_range=None,
Hongkun Yu's avatar
Hongkun Yu committed
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
               kernel_initializer="glorot_uniform",
               bias_initializer="zeros",
               kernel_regularizer=None,
               bias_regularizer=None,
               activity_regularizer=None,
               kernel_constraint=None,
               bias_constraint=None,
               **kwargs):
    super(Transformer, self).__init__(**kwargs)

    self._num_heads = num_attention_heads
    self._intermediate_size = intermediate_size
    self._intermediate_activation = intermediate_activation
    self._attention_dropout_rate = attention_dropout_rate
    self._dropout_rate = dropout_rate
76
    self._output_range = output_range
Hongkun Yu's avatar
Hongkun Yu committed
77
78
79
80
    self._kernel_initializer = tf.keras.initializers.get(kernel_initializer)
    self._bias_initializer = tf.keras.initializers.get(bias_initializer)
    self._kernel_regularizer = tf.keras.regularizers.get(kernel_regularizer)
    self._bias_regularizer = tf.keras.regularizers.get(bias_regularizer)
Hongkun Yu's avatar
Hongkun Yu committed
81
    self._activity_regularizer = tf.keras.regularizers.get(activity_regularizer)
Hongkun Yu's avatar
Hongkun Yu committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
    self._kernel_constraint = tf.keras.constraints.get(kernel_constraint)
    self._bias_constraint = tf.keras.constraints.get(bias_constraint)

  def build(self, input_shape):
    input_tensor = input_shape[0] if len(input_shape) == 2 else input_shape
    input_tensor_shape = tf.TensorShape(input_tensor)
    if len(input_tensor_shape) != 3:
      raise ValueError("TransformerLayer expects a three-dimensional input of "
                       "shape [batch, sequence, width].")
    batch_size, sequence_length, hidden_size = input_tensor_shape

    if len(input_shape) == 2:
      mask_tensor_shape = tf.TensorShape(input_shape[1])
      expected_mask_tensor_shape = tf.TensorShape(
          [batch_size, sequence_length, sequence_length])
      if not expected_mask_tensor_shape.is_compatible_with(mask_tensor_shape):
        raise ValueError("When passing a mask tensor to TransformerLayer, the "
                         "mask tensor must be of shape [batch, "
                         "sequence_length, sequence_length] (here %s). Got a "
                         "mask tensor of shape %s." %
                         (expected_mask_tensor_shape, mask_tensor_shape))
    if hidden_size % self._num_heads != 0:
      raise ValueError(
          "The input size (%d) is not a multiple of the number of attention "
          "heads (%d)" % (hidden_size, self._num_heads))
    self._attention_head_size = int(hidden_size // self._num_heads)
108
    common_kwargs = dict(
Hongkun Yu's avatar
Hongkun Yu committed
109
110
111
112
113
114
        kernel_initializer=self._kernel_initializer,
        bias_initializer=self._bias_initializer,
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer,
        activity_regularizer=self._activity_regularizer,
        kernel_constraint=self._kernel_constraint,
115
116
117
118
119
120
121
        bias_constraint=self._bias_constraint)
    self._attention_layer = attention.MultiHeadAttention(
        num_heads=self._num_heads,
        key_size=self._attention_head_size,
        dropout=self._attention_dropout_rate,
        name="self_attention",
        **common_kwargs)
122
123
124
125
    # pylint: disable=protected-access
    self._attention_layer.build([input_tensor_shape] * 3)
    self._attention_output_dense = self._attention_layer._output_dense
    # pylint: enable=protected-access
Hongkun Yu's avatar
Hongkun Yu committed
126
    self._attention_dropout = tf.keras.layers.Dropout(rate=self._dropout_rate)
Zongwei Zhou's avatar
Zongwei Zhou committed
127
128
    # Use float32 in layernorm for numeric stability.
    # It is probably safe in mixed_float16, but we haven't validated this yet.
Hongkun Yu's avatar
Hongkun Yu committed
129
130
    self._attention_layer_norm = (
        tf.keras.layers.LayerNormalization(
Chen Chen's avatar
Chen Chen committed
131
132
133
            name="self_attention_layer_norm",
            axis=-1,
            epsilon=1e-12,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
134
            dtype=tf.float32))
135
136
137
138
139
140
    self._intermediate_dense = tf.keras.layers.experimental.EinsumDense(
        "abc,cd->abd",
        output_shape=(None, self._intermediate_size),
        bias_axes="d",
        name="intermediate",
        **common_kwargs)
141
142
143
144
145
146
    policy = tf.keras.mixed_precision.experimental.global_policy()
    if policy.name == "mixed_bfloat16":
      # bfloat16 causes BERT with the LAMB optimizer to not converge
      # as well, so we use float32.
      # TODO(b/154538392): Investigate this.
      policy = tf.float32
Chen Chen's avatar
Chen Chen committed
147
    self._intermediate_activation_layer = tf.keras.layers.Activation(
148
        self._intermediate_activation, dtype=policy)
149
150
151
152
153
154
    self._output_dense = tf.keras.layers.experimental.EinsumDense(
        "abc,cd->abd",
        output_shape=(None, hidden_size),
        bias_axes="d",
        name="output",
        **common_kwargs)
Hongkun Yu's avatar
Hongkun Yu committed
155
    self._output_dropout = tf.keras.layers.Dropout(rate=self._dropout_rate)
Zongwei Zhou's avatar
Zongwei Zhou committed
156
    # Use float32 in layernorm for numeric stability.
Hongkun Yu's avatar
Hongkun Yu committed
157
    self._output_layer_norm = tf.keras.layers.LayerNormalization(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
158
        name="output_layer_norm", axis=-1, epsilon=1e-12, dtype=tf.float32)
Hongkun Yu's avatar
Hongkun Yu committed
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

    super(Transformer, self).build(input_shape)

  def get_config(self):
    config = {
        "num_attention_heads":
            self._num_heads,
        "intermediate_size":
            self._intermediate_size,
        "intermediate_activation":
            self._intermediate_activation,
        "dropout_rate":
            self._dropout_rate,
        "attention_dropout_rate":
            self._attention_dropout_rate,
174
175
        "output_range":
            self._output_range,
Hongkun Yu's avatar
Hongkun Yu committed
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
        "kernel_initializer":
            tf.keras.initializers.serialize(self._kernel_initializer),
        "bias_initializer":
            tf.keras.initializers.serialize(self._bias_initializer),
        "kernel_regularizer":
            tf.keras.regularizers.serialize(self._kernel_regularizer),
        "bias_regularizer":
            tf.keras.regularizers.serialize(self._bias_regularizer),
        "activity_regularizer":
            tf.keras.regularizers.serialize(self._activity_regularizer),
        "kernel_constraint":
            tf.keras.constraints.serialize(self._kernel_constraint),
        "bias_constraint":
            tf.keras.constraints.serialize(self._bias_constraint)
    }
    base_config = super(Transformer, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))

  def call(self, inputs):
    if isinstance(inputs, (list, tuple)) and len(inputs) == 2:
      input_tensor, attention_mask = inputs
    else:
      input_tensor, attention_mask = (inputs, None)

200
201
202
203
204
205
    if self._output_range:
      target_tensor = input_tensor[:, 0:self._output_range, :]
      attention_mask = attention_mask[:, 0:self._output_range, :]
    else:
      target_tensor = input_tensor
    attention_inputs = [target_tensor, input_tensor]
Hongkun Yu's avatar
Hongkun Yu committed
206

Hongkun Yu's avatar
Hongkun Yu committed
207
    attention_output = self._attention_layer(attention_inputs, attention_mask)
208
    attention_output = self._attention_dropout(attention_output)
209
    attention_output = self._attention_layer_norm(target_tensor +
210
211
212
213
214
215
216
217
218
219
220
221
222
                                                  attention_output)
    intermediate_output = self._intermediate_dense(attention_output)
    intermediate_output = self._intermediate_activation_layer(
        intermediate_output)
    layer_output = self._output_dense(intermediate_output)
    layer_output = self._output_dropout(layer_output)
    # During mixed precision training, attention_output is from layer norm and
    # is always fp32 for now. Cast layer_output to fp32 for the subsequent
    # add.
    layer_output = tf.cast(layer_output, tf.float32)
    layer_output = self._output_layer_norm(layer_output + attention_output)

    return layer_output
223
224


Chen Chen's avatar
Chen Chen committed
225
226
@tf.keras.utils.register_keras_serializable(package="Text")
@gin.configurable
227
228
229
230
231
class CompiledTransformer(Transformer):

  @tf_function_if_eager(experimental_compile=True)
  def call(self, inputs):
    return super(CompiledTransformer, self).call(inputs)
232
233
234
235
236
237
238
239
240
241


@tf.keras.utils.register_keras_serializable(package="Text")
class TransformerDecoderLayer(tf.keras.layers.Layer):
  """Single transformer layer for decoder.

  It has three sub-layers:
  (1) a multi-head self-attention mechanism.
  (2) a encoder-decoder attention.
  (3) a positionwise fully connected feed-forward network.
Hongkun Yu's avatar
Hongkun Yu committed
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257

  Arguments:
    num_attention_heads: Number of attention heads.
    intermediate_size: Size of the intermediate layer.
    intermediate_activation: Activation for the intermediate layer.
    dropout_rate: Dropout probability for the post-attention and output dropout.
    attention_dropout_rate: Dropout probability for within the attention layer.
    multi_channel_cross_attention: Whether to use `MultiChannelAttention` for
      cross-attention between target sequences and source sequences.
    kernel_initializer: Initializer for dense layer kernels.
    bias_initializer: Initializer for dense layer biases.
    kernel_regularizer: Regularizer for dense layer kernels.
    bias_regularizer: Regularizer for dense layer biases.
    activity_regularizer: Regularizer for dense layer activity.
    kernel_constraint: Constraint for dense layer kernels.
    bias_constraint: Constraint for dense layer kernels.
258
259
260
  """

  def __init__(self,
Hongkun Yu's avatar
Hongkun Yu committed
261
262
263
264
265
               num_attention_heads,
               intermediate_size,
               intermediate_activation,
               dropout_rate=0.0,
               attention_dropout_rate=0.0,
266
               multi_channel_cross_attention=False,
Hongkun Yu's avatar
Hongkun Yu committed
267
268
269
270
271
272
273
               kernel_initializer="glorot_uniform",
               bias_initializer="zeros",
               kernel_regularizer=None,
               bias_regularizer=None,
               activity_regularizer=None,
               kernel_constraint=None,
               bias_constraint=None,
274
275
276
277
278
279
               **kwargs):
    super(TransformerDecoderLayer, self).__init__(**kwargs)
    self.num_attention_heads = num_attention_heads
    self.intermediate_size = intermediate_size
    self.intermediate_activation = tf.keras.activations.get(
        intermediate_activation)
Hongkun Yu's avatar
Hongkun Yu committed
280
281
    self.dropout_rate = dropout_rate
    self.attention_dropout_rate = attention_dropout_rate
282
    self.multi_channel_cross_attention = multi_channel_cross_attention
Hongkun Yu's avatar
Hongkun Yu committed
283
284
285
286
287
288
289
    self._kernel_initializer = tf.keras.initializers.get(kernel_initializer)
    self._bias_initializer = tf.keras.initializers.get(bias_initializer)
    self._kernel_regularizer = tf.keras.regularizers.get(kernel_regularizer)
    self._bias_regularizer = tf.keras.regularizers.get(bias_regularizer)
    self._activity_regularizer = tf.keras.regularizers.get(activity_regularizer)
    self._kernel_constraint = tf.keras.constraints.get(kernel_constraint)
    self._bias_constraint = tf.keras.constraints.get(bias_constraint)
290
291
292
293
294
    if self.multi_channel_cross_attention:
      self._cross_attention_cls = multi_channel_attention.MultiChannelAttention
    else:
      self._cross_attention_cls = attention.MultiHeadAttention

Hongkun Yu's avatar
Hongkun Yu committed
295
296
297
298
299
300
301
  def build(self, input_shape):
    target_tensor_shape = tf.TensorShape(input_shape[0])
    if len(target_tensor_shape) != 3:
      raise ValueError("TransformerLayer expects a three-dimensional input of "
                       "shape [batch, sequence, width].")
    hidden_size = target_tensor_shape[2]
    if hidden_size % self.num_attention_heads != 0:
302
303
      raise ValueError(
          "The hidden size (%d) is not a multiple of the number of attention "
Hongkun Yu's avatar
Hongkun Yu committed
304
305
          "heads (%d)" % (hidden_size, self.num_attention_heads))
    self.attention_head_size = int(hidden_size / self.num_attention_heads)
306
    common_kwargs = dict(
307
308
        kernel_initializer=self._kernel_initializer,
        bias_initializer=self._bias_initializer,
Hongkun Yu's avatar
Hongkun Yu committed
309
310
311
312
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer,
        activity_regularizer=self._activity_regularizer,
        kernel_constraint=self._kernel_constraint,
313
314
315
316
317
318
319
320
321
322
323
324
325
326
        bias_constraint=self._bias_constraint)
    # Self attention.
    self.self_attention = attention.CachedAttention(
        num_heads=self.num_attention_heads,
        key_size=self.attention_head_size,
        dropout=self.attention_dropout_rate,
        name="self_attention",
        **common_kwargs)
    self.self_attention_output_dense = tf.keras.layers.experimental.EinsumDense(
        "abc,cd->abd",
        output_shape=(None, hidden_size),
        bias_axes="d",
        name="output",
        **common_kwargs)
327
    self.self_attention_dropout = tf.keras.layers.Dropout(
Hongkun Yu's avatar
Hongkun Yu committed
328
        rate=self.dropout_rate)
329
330
331
332
333
334
335
    self.self_attention_layer_norm = (
        tf.keras.layers.LayerNormalization(
            name="self_attention_layer_norm", axis=-1, epsilon=1e-12))
    # Encoder-decoder attention.
    self.encdec_attention = self._cross_attention_cls(
        num_heads=self.num_attention_heads,
        key_size=self.attention_head_size,
Hongkun Yu's avatar
Hongkun Yu committed
336
337
        dropout=self.attention_dropout_rate,
        output_shape=hidden_size,
338
339
        name="attention/encdec",
        **common_kwargs)
340
341

    self.encdec_attention_dropout = tf.keras.layers.Dropout(
Hongkun Yu's avatar
Hongkun Yu committed
342
        rate=self.dropout_rate)
343
344
345
346
347
    self.encdec_attention_layer_norm = (
        tf.keras.layers.LayerNormalization(
            name="attention/encdec_output_layer_norm", axis=-1, epsilon=1e-12))

    # Feed-forward projection.
348
349
350
351
352
353
    self.intermediate_dense = tf.keras.layers.experimental.EinsumDense(
        "abc,cd->abd",
        output_shape=(None, self.intermediate_size),
        bias_axes="d",
        name="intermediate",
        **common_kwargs)
354
355
    self.intermediate_activation_layer = tf.keras.layers.Activation(
        self.intermediate_activation)
356
357
358
359
360
361
    self.output_dense = tf.keras.layers.experimental.EinsumDense(
        "abc,cd->abd",
        output_shape=(None, hidden_size),
        bias_axes="d",
        name="output",
        **common_kwargs)
Hongkun Yu's avatar
Hongkun Yu committed
362
    self.output_dropout = tf.keras.layers.Dropout(rate=self.dropout_rate)
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
    self.output_layer_norm = tf.keras.layers.LayerNormalization(
        name="output_layer_norm", axis=-1, epsilon=1e-12)
    super(TransformerDecoderLayer, self).build(input_shape)

  def common_layers_with_encoder(self):
    """Gets layer objects that can make a Transformer encoder block."""
    return [
        self.self_attention, self.self_attention_layer_norm,
        self.intermediate_dense, self.output_dense, self.output_layer_norm
    ]

  def call(self, inputs, cache=None, decode_loop_step=None):
    if self.multi_channel_cross_attention:
      if len(inputs) != 5:
        raise ValueError(
            "TransformerDecoderLayer must have 5 inputs, when it uses "
            "multi_channel_cross_attention. But it got: %d" % len(inputs))
    elif len(inputs) != 4:
      raise ValueError(
          "TransformerDecoderLayer must have 4 inputs, but it got: %d" %
          len(inputs))
    input_tensor, memory, attention_mask, self_attention_mask = inputs[:4]
    self_attention_inputs = [input_tensor, input_tensor]
    self_attention_output, cache = self.self_attention(
        self_attention_inputs,
        attention_mask=self_attention_mask,
        cache=cache,
        decode_loop_step=decode_loop_step)
    self_attention_output = self.self_attention_dropout(self_attention_output)
    self_attention_output = self.self_attention_layer_norm(
        input_tensor + self_attention_output)

    cross_attn_inputs = [self_attention_output, memory]
    if self.multi_channel_cross_attention:
      # Accesses the 5-th input tensor for the doc-attention probabilities.
      cross_attn_inputs.append(inputs[-1])
    attention_output = self.encdec_attention(cross_attn_inputs, attention_mask)
    attention_output = self.encdec_attention_dropout(attention_output)
    attention_output = self.encdec_attention_layer_norm(self_attention_output +
                                                        attention_output)

    intermediate_output = self.intermediate_dense(attention_output)
    intermediate_output = self.intermediate_activation_layer(
        intermediate_output)
    layer_output = self.output_dense(intermediate_output)
    layer_output = self.output_dropout(layer_output)
    layer_output = self.output_layer_norm(layer_output + attention_output)
    return layer_output, cache