encoders.py 3.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
16
17
18
19
"""Transformer Encoders.

Includes configurations and instantiation methods.
"""
20
import dataclasses
Hongkun Yu's avatar
Hongkun Yu committed
21
import gin
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
22
import tensorflow as tf
23

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
24
from official.modeling import tf_utils
25
from official.modeling.hyperparams import base_config
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
26
from official.nlp.modeling import networks
27
28
29
30
31
32
33
34
35
36


@dataclasses.dataclass
class TransformerEncoderConfig(base_config.Config):
  """BERT encoder configuration."""
  vocab_size: int = 30522
  hidden_size: int = 768
  num_layers: int = 12
  num_attention_heads: int = 12
  hidden_activation: str = "gelu"
Chen Chen's avatar
Chen Chen committed
37
  intermediate_size: int = 3072
38
39
40
41
42
  dropout_rate: float = 0.1
  attention_dropout_rate: float = 0.1
  max_position_embeddings: int = 512
  type_vocab_size: int = 2
  initializer_range: float = 0.02
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
43
44


Hongkun Yu's avatar
Hongkun Yu committed
45
46
47
@gin.configurable
def instantiate_encoder_from_cfg(config: TransformerEncoderConfig,
                                 encoder_cls=networks.TransformerEncoder):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
48
  """Instantiate a Transformer encoder network from TransformerEncoderConfig."""
Hongkun Yu's avatar
Hongkun Yu committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
  if encoder_cls.__name__ == "EncoderScaffold":
    embedding_cfg = dict(
        vocab_size=config.vocab_size,
        type_vocab_size=config.type_vocab_size,
        hidden_size=config.hidden_size,
        seq_length=None,
        max_seq_length=config.max_position_embeddings,
        initializer=tf.keras.initializers.TruncatedNormal(
            stddev=config.initializer_range),
        dropout_rate=config.dropout_rate,
    )
    hidden_cfg = dict(
        num_attention_heads=config.num_attention_heads,
        intermediate_size=config.intermediate_size,
        intermediate_activation=tf_utils.get_activation(
            config.hidden_activation),
        dropout_rate=config.dropout_rate,
        attention_dropout_rate=config.attention_dropout_rate,
        kernel_initializer=tf.keras.initializers.TruncatedNormal(
            stddev=config.initializer_range),
    )
    kwargs = dict(
        embedding_cfg=embedding_cfg,
        hidden_cfg=hidden_cfg,
        num_hidden_instances=config.num_layers,
        pooled_output_dim=config.hidden_size,
        pooler_layer_initializer=tf.keras.initializers.TruncatedNormal(
            stddev=config.initializer_range))
    return encoder_cls(**kwargs)

  if encoder_cls.__name__ != "TransformerEncoder":
    raise ValueError("Unknown encoder network class. %s" % str(encoder_cls))
  encoder_network = encoder_cls(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
82
83
84
85
86
87
88
89
      vocab_size=config.vocab_size,
      hidden_size=config.hidden_size,
      num_layers=config.num_layers,
      num_attention_heads=config.num_attention_heads,
      intermediate_size=config.intermediate_size,
      activation=tf_utils.get_activation(config.hidden_activation),
      dropout_rate=config.dropout_rate,
      attention_dropout_rate=config.attention_dropout_rate,
Chen Chen's avatar
Chen Chen committed
90
      sequence_length=None,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
91
92
93
94
95
      max_sequence_length=config.max_position_embeddings,
      type_vocab_size=config.type_vocab_size,
      initializer=tf.keras.initializers.TruncatedNormal(
          stddev=config.initializer_range))
  return encoder_network