model_zoo.md 12.1 KB
Newer Older
yukun's avatar
yukun committed
1
2
# TensorFlow DeepLab Model Zoo

3
4
5
6
We provide deeplab models pretrained several datasets, including (1) PASCAL VOC
2012, (2) Cityscapes, and (3) ADE20K for reproducing our results, as well as
some checkpoints that are only pretrained on ImageNet for training your own
models.
yukun's avatar
yukun committed
7
8
9
10
11
12
13

## DeepLab models trained on PASCAL VOC 2012

Un-tar'ed directory includes:

*   a frozen inference graph (`frozen_inference_graph.pb`). All frozen inference
    graphs use output stride of 8 and a single eval scale of 1.0. No left-right
14
15
    flips are used, and MobileNet-v2 based models do not include the decoder
    module.
yukun's avatar
yukun committed
16
17
18
19
20
21
22
23
24
25

*   a checkpoint (`model.ckpt.data-00000-of-00001`, `model.ckpt.index`)

### Model details

We provide several checkpoints that have been pretrained on VOC 2012 train_aug
set or train_aug + trainval set. In the former case, one could train their model
with smaller batch size and freeze batch normalization when limited GPU memory
is available, since we have already fine-tuned the batch normalization for you.
In the latter case, one could directly evaluate the checkpoints on VOC 2012 test
26
27
set or use this checkpoint for demo. Note *MobileNet-v2* based models do not
employ ASPP and decoder modules for fast computation.
yukun's avatar
yukun committed
28

yukun's avatar
yukun committed
29
30
Checkpoint name             | Network backbone | Pretrained  dataset | ASPP  | Decoder
--------------------------- | :--------------: | :-----------------: | :---: | :-----:
31
32
mobilenetv2_coco_voc_trainaug | MobileNet-v2  | MS-COCO <br> VOC 2012 train_aug set| N/A | N/A
mobilenetv2_coco_voc_trainval | MobileNet-v2  | MS-COCO <br> VOC 2012 train_aug + trainval sets | N/A | N/A
yukun's avatar
yukun committed
33
34
xception_coco_voc_trainaug  | Xception_65  | MS-COCO <br> VOC 2012 train_aug set| [6,12,18] for OS=16 <br> [12,24,36] for OS=8 | OS = 4
xception_coco_voc_trainval  | Xception_65  | MS-COCO <br> VOC 2012 train_aug + trainval sets | [6,12,18] for OS=16 <br> [12,24,36] for OS=8 | OS = 4
yukun's avatar
yukun committed
35
36
37
38
39

In the table, **OS** denotes output stride.

Checkpoint name                                                                                                          | Eval OS   | Eval scales                | Left-right Flip | Multiply-Adds        | Runtime (sec)  | PASCAL mIOU                    | File Size
------------------------------------------------------------------------------------------------------------------------ | :-------: | :------------------------: | :-------------: | :------------------: | :------------: | :----------------------------: | :-------:
40
41
[mobilenetv2_coco_voc_trainaug](http://download.tensorflow.org/models/deeplabv3_mnv2_pascal_train_aug_2018_01_29.tar.gz) | 16 <br> 8 | [1.0] <br> [0.5:0.25:1.75] | No <br> Yes     | 2.75B <br> 152.59B   | 0.1 <br> 26.9  | 75.32% (val) <br> 77.33 (val)  | 23MB
[mobilenetv2_coco_voc_trainval](http://download.tensorflow.org/models/deeplabv3_mnv2_pascal_trainval_2018_01_29.tar.gz)  | 8         | [0.5:0.25:1.75]            | Yes             | 152.59B              | 26.9           | 80.25% (**test**)              | 23MB
yukun's avatar
yukun committed
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
[xception_coco_voc_trainaug](http://download.tensorflow.org/models/deeplabv3_pascal_train_aug_2018_01_04.tar.gz)         | 16 <br> 8 | [1.0] <br> [0.5:0.25:1.75] | No <br> Yes     | 54.17B <br> 3055.35B | 0.7 <br> 223.2 | 82.20% (val) <br> 83.58% (val) | 439MB
[xception_coco_voc_trainval](http://download.tensorflow.org/models/deeplabv3_pascal_trainval_2018_01_04.tar.gz)          | 8         | [0.5:0.25:1.75]            | Yes             | 3055.35B             | 223.2          | 87.80% (**test**)              | 439MB

In the table, we report both computation complexity (in terms of Multiply-Adds
and CPU Runtime) and segmentation performance (in terms of mIOU) on the PASCAL
VOC val or test set. The reported runtime is calculated by tfprof on a
workstation with CPU E5-1650 v3 @ 3.50GHz and 32GB memory. Note that applying
multi-scale inputs and left-right flips increases the segmentation performance
but also significantly increases the computation and thus may not be suitable
for real-time applications.

## DeepLab models trained on Cityscapes

### Model details

We provide several checkpoints that have been pretrained on Cityscapes
58
59
train_fine set. Note *MobileNet-v2* based model has been pretrained on MS-COCO
dataset and does not employ ASPP and decoder modules for fast computation.
yukun's avatar
yukun committed
60
61
62

Checkpoint name                       | Network backbone | Pretrained dataset                      | ASPP                                             | Decoder
------------------------------------- | :--------------: | :-------------------------------------: | :----------------------------------------------: | :-----:
63
mobilenetv2_coco_cityscapes_trainfine | MobileNet-v2     | MS-COCO <br> Cityscapes train_fine set  | N/A                                              | N/A
yukun's avatar
yukun committed
64
65
66
67
68
69
xception_cityscapes_trainfine         | Xception_65      | ImageNet <br> Cityscapes train_fine set | [6, 12, 18] for OS=16 <br> [12, 24, 36] for OS=8 | OS = 4

In the table, **OS** denotes output stride.

Checkpoint name                                                                                                                  | Eval OS   | Eval scales                 | Left-right Flip | Multiply-Adds         | Runtime (sec)  | Cityscapes mIOU                | File Size
-------------------------------------------------------------------------------------------------------------------------------- | :-------: | :-------------------------: | :-------------: | :-------------------: | :------------: | :----------------------------: | :-------:
70
[mobilenetv2_coco_cityscapes_trainfine](http://download.tensorflow.org/models/deeplabv3_mnv2_cityscapes_train_2018_02_05.tar.gz) | 16 <br> 8 | [1.0] <br> [0.75:0.25:1.25] | No <br> Yes     | 21.27B <br> 433.24B   | 0.8 <br> 51.12 | 70.71% (val) <br> 73.57% (val) | 23MB
yukun's avatar
yukun committed
71
72
[xception_cityscapes_trainfine](http://download.tensorflow.org/models/deeplabv3_cityscapes_train_2018_02_06.tar.gz)              | 16 <br> 8 | [1.0] <br> [0.75:0.25:1.25] | No <br> Yes     | 418.64B <br> 8677.92B | 5.0 <br> 422.8 | 78.79% (val) <br> 80.42% (val) | 439MB

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
## DeepLab models trained on ADE20K

### Model details

We provide some checkpoints that have been pretrained on ADE20K training set.
Note that the model has only been pretrained on ImageNet, following the
dataset rule.

Checkpoint name                       | Network backbone | Pretrained dataset                      | ASPP                                             | Decoder
------------------------------------- | :--------------: | :-------------------------------------: | :----------------------------------------------: | :-----:
xception_ade20k_train                 | Xception_65      | ImageNet <br> ADE20K training set       | [6, 12, 18] for OS=16 <br> [12, 24, 36] for OS=8 | OS = 4

Checkpoint name                                                                                                                  | Eval OS   | Eval scales                 | Left-right Flip |  mIOU                 | Pixel-wise Accuracy | File Size
-------------------------------------------------------------------------------------------------------------------------------- | :-------: | :-------------------------: | :-------------: | :-------------------: | :------------: | :----------------------------: | :-------:
[xception_ade20k_train](http://download.tensorflow.org/models/deeplabv3_xception_ade20k_train_2018_05_14.tar.gz)              | 16 | [0.5:0.25:1.75] | Yes     | 43.54% (val) | 81.74% (val) | 439MB

yukun's avatar
yukun committed
89
90
91
92
93
94
95
96
97
98
99
## Checkpoints pretrained on ImageNet

Un-tar'ed directory includes:

*   model checkpoint (`model.ckpt.data-00000-of-00001`, `model.ckpt.index`).

### Model details

We also provide some checkpoints that are only pretrained on ImageNet so that
one could use this for training your own models.

100
101
102
103
*   mobilenet_v2: We refer the interested users to the TensorFlow open source
    [MobileNet-V2](https://github.com/tensorflow/models/tree/master/research/slim/nets/mobilenet)
    for details.

104
105
106
107
108
109
110
111
112
113
*   xception_{41,65,71}: We adapt the original Xception model to the task of
    semantic segmentation with the following changes: (1) more layers, (2) all
    max pooling operations are replaced by strided (atrous) separable
    convolutions, and (3) extra batch-norm and ReLU after each 3x3 depthwise
    convolution are added. We provide three Xception model variants with
    different network depths.

*   resnet_v1_{50,101}_beta: We modify the original ResNet-101 [10], similar to
    PSPNet [11] by replacing the first 7x7 convolution with three 3x3
    convolutions. See resnet_v1_beta.py for more details.
yukun's avatar
yukun committed
114
115
116

Model name                                                                             | File Size
-------------------------------------------------------------------------------------- | :-------:
117
118
119
120
121
[xception_41](http://download.tensorflow.org/models/xception_41_2018_05_09.tar.gz ) | 288MB
[xception_65](http://download.tensorflow.org/models/deeplabv3_xception_2018_01_04.tar.gz) | 447MB
[xception_71](http://download.tensorflow.org/models/xception_71_2018_05_09.tar.gz  ) | 474MB
[resnet_v1_50_beta](http://download.tensorflow.org/models/resnet_v1_50_2018_05_04.tar.gz)      | 274MB
[resnet_v1_101_beta](http://download.tensorflow.org/models/resnet_v1_101_2018_05_04.tar.gz)    | 477MB
yukun's avatar
yukun committed
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

## References

1.  **Mobilenets: Efficient convolutional neural networks for mobile vision applications**<br />
    Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam<br />
    [[link]](https://arxiv.org/abs/1704.04861). arXiv:1704.04861, 2017.

2.  **Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation**<br />
    Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen<br />
    [[link]](https://arxiv.org/abs/1801.04381). arXiv:1801.04381, 2018.

3.  **Xception: Deep Learning with Depthwise Separable Convolutions**<br />
    François Chollet<br />
    [[link]](https://arxiv.org/abs/1610.02357). In the Proc. of CVPR, 2017.

4.  **Deformable Convolutional Networks -- COCO Detection and Segmentation Challenge 2017 Entry**<br />
    Haozhi Qi, Zheng Zhang, Bin Xiao, Han Hu, Bowen Cheng, Yichen Wei, Jifeng Dai<br />
    [[link]](http://presentations.cocodataset.org/COCO17-Detect-MSRA.pdf). ICCV COCO Challenge
    Workshop, 2017.

5.  **The Pascal Visual Object Classes Challenge: A Retrospective**<br />
    Mark Everingham, S. M. Ali Eslami, Luc Van Gool, Christopher K. I. Williams, John M. Winn, Andrew Zisserman<br />
    [[link]](http://host.robots.ox.ac.uk/pascal/VOC/voc2012/). IJCV, 2014.

6.  **Semantic Contours from Inverse Detectors**<br />
    Bharath Hariharan, Pablo Arbelaez, Lubomir Bourdev, Subhransu Maji, Jitendra Malik<br />
    [[link]](http://home.bharathh.info/pubs/codes/SBD/download.html). In the Proc. of ICCV, 2011.

7.  **The Cityscapes Dataset for Semantic Urban Scene Understanding**<br />
    Cordts, Marius, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, Bernt Schiele. <br />
    [[link]](https://www.cityscapes-dataset.com/). In the Proc. of CVPR, 2016.

8.  **Microsoft COCO: Common Objects in Context**<br />
    Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, Piotr Dollar<br />
    [[link]](http://cocodataset.org/). In the Proc. of ECCV, 2014.

9.  **ImageNet Large Scale Visual Recognition Challenge**<br />
    Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, Li Fei-Fei<br />
    [[link]](http://www.image-net.org/). IJCV, 2015.
161
162
163
164
165
166
167
168
169
170
171
172
173

10. **Deep Residual Learning for Image Recognition**<br />
    Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun<br />
    [[link]](https://arxiv.org/abs/1512.03385). CVPR, 2016.

11. **Pyramid Scene Parsing Network**<br />
    Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, Jiaya Jia<br />
    [[link]](https://arxiv.org/abs/1612.01105). In CVPR, 2017.

12. **Scene Parsing through ADE20K Dataset**<br />
    Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, Antonio Torralba<br />
    [[link]](http://groups.csail.mit.edu/vision/datasets/ADE20K/). In CVPR,
    2017.