build_data.py 4.79 KB
Newer Older
yukun's avatar
yukun committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Contains common utility functions and classes for building dataset.

This script contains utility functions and classes to converts dataset to
TFRecord file format with Example protos.

The Example proto contains the following fields:

  image/encoded: encoded image content.
  image/filename: image filename.
  image/format: image file format.
  image/height: image height.
  image/width: image width.
  image/channels: image channels.
  image/segmentation/class/encoded: encoded semantic segmentation content.
  image/segmentation/class/format: semantic segmentation file format.
"""
import collections
33
import six
yukun's avatar
yukun committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import tensorflow as tf

FLAGS = tf.app.flags.FLAGS

tf.app.flags.DEFINE_enum('image_format', 'png', ['jpg', 'jpeg', 'png'],
                         'Image format.')

tf.app.flags.DEFINE_enum('label_format', 'png', ['png'],
                         'Segmentation label format.')

# A map from image format to expected data format.
_IMAGE_FORMAT_MAP = {
    'jpg': 'jpeg',
    'jpeg': 'jpeg',
    'png': 'png',
}


class ImageReader(object):
  """Helper class that provides TensorFlow image coding utilities."""

  def __init__(self, image_format='jpeg', channels=3):
    """Class constructor.

    Args:
      image_format: Image format. Only 'jpeg', 'jpg', or 'png' are supported.
      channels: Image channels.
    """
    with tf.Graph().as_default():
      self._decode_data = tf.placeholder(dtype=tf.string)
      self._image_format = image_format
      self._session = tf.Session()
      if self._image_format in ('jpeg', 'jpg'):
        self._decode = tf.image.decode_jpeg(self._decode_data,
                                            channels=channels)
      elif self._image_format == 'png':
        self._decode = tf.image.decode_png(self._decode_data,
                                           channels=channels)

  def read_image_dims(self, image_data):
    """Reads the image dimensions.

    Args:
      image_data: string of image data.

    Returns:
      image_height and image_width.
    """
    image = self.decode_image(image_data)
    return image.shape[:2]

  def decode_image(self, image_data):
    """Decodes the image data string.

    Args:
      image_data: string of image data.

    Returns:
      Decoded image data.

    Raises:
      ValueError: Value of image channels not supported.
    """
    image = self._session.run(self._decode,
                              feed_dict={self._decode_data: image_data})
    if len(image.shape) != 3 or image.shape[2] not in (1, 3):
      raise ValueError('The image channels not supported.')

    return image


def _int64_list_feature(values):
  """Returns a TF-Feature of int64_list.

  Args:
    values: A scalar or list of values.

  Returns:
    A TF-Feature.
  """
  if not isinstance(values, collections.Iterable):
    values = [values]

  return tf.train.Feature(int64_list=tf.train.Int64List(value=values))


def _bytes_list_feature(values):
  """Returns a TF-Feature of bytes.

  Args:
    values: A string.

  Returns:
    A TF-Feature.
  """
129
  def norm2bytes(value):
130
    return value.encode() if isinstance(value, str) and six.PY3 else value
131

132
133
  return tf.train.Feature(
      bytes_list=tf.train.BytesList(value=[norm2bytes(values)]))
yukun's avatar
yukun committed
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161


def image_seg_to_tfexample(image_data, filename, height, width, seg_data):
  """Converts one image/segmentation pair to tf example.

  Args:
    image_data: string of image data.
    filename: image filename.
    height: image height.
    width: image width.
    seg_data: string of semantic segmentation data.

  Returns:
    tf example of one image/segmentation pair.
  """
  return tf.train.Example(features=tf.train.Features(feature={
      'image/encoded': _bytes_list_feature(image_data),
      'image/filename': _bytes_list_feature(filename),
      'image/format': _bytes_list_feature(
          _IMAGE_FORMAT_MAP[FLAGS.image_format]),
      'image/height': _int64_list_feature(height),
      'image/width': _int64_list_feature(width),
      'image/channels': _int64_list_feature(3),
      'image/segmentation/class/encoded': (
          _bytes_list_feature(seg_data)),
      'image/segmentation/class/format': _bytes_list_feature(
          FLAGS.label_format),
  }))