build_ade20k_data.py 4.15 KB
Newer Older
Yubin Ruan's avatar
Yubin Ruan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

16
17
"""Converts ADE20K data to TFRecord file format with Example protos."""

Yubin Ruan's avatar
Yubin Ruan committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import math
import os
import random
import sys
import build_data
import tensorflow as tf

FLAGS = tf.app.flags.FLAGS

tf.app.flags.DEFINE_string(
    'train_image_folder',
    './ADE20K/ADEChallengeData2016/images/training',
    'Folder containing trainng images')
tf.app.flags.DEFINE_string(
    'train_image_label_folder',
    './ADE20K/ADEChallengeData2016/annotations/training',
    'Folder containing annotations for trainng images')

tf.app.flags.DEFINE_string(
    'val_image_folder',
    './ADE20K/ADEChallengeData2016/images/validation',
    'Folder containing validation images')

tf.app.flags.DEFINE_string(
    'val_image_label_folder',
    './ADE20K/ADEChallengeData2016/annotations/validation',
    'Folder containing annotations for validation')

tf.app.flags.DEFINE_string(
    'output_dir', './ADE20K/tfrecord',
48
    'Path to save converted tfrecord of Tensorflow example')
Yubin Ruan's avatar
Yubin Ruan committed
49
50
51

_NUM_SHARDS = 4

52

Yubin Ruan's avatar
Yubin Ruan committed
53
def _convert_dataset(dataset_split, dataset_dir, dataset_label_dir):
54
  """Converts the ADE20k dataset into into tfrecord format.
Yubin Ruan's avatar
Yubin Ruan committed
55
56

  Args:
57
58
59
    dataset_split: Dataset split (e.g., train, val).
    dataset_dir: Dir in which the dataset locates.
    dataset_label_dir: Dir in which the annotations locates.
Yubin Ruan's avatar
Yubin Ruan committed
60
61
62
63
64

  Raises:
    RuntimeError: If loaded image and label have different shape.
  """

65
  img_names = tf.gfile.Glob(os.path.join(dataset_dir, '*.jpg'))
Yubin Ruan's avatar
Yubin Ruan committed
66
67
68
69
  random.shuffle(img_names)
  seg_names = []
  for f in img_names:
    # get the filename without the extension
70
    basename = os.path.basename(f).split('.')[0]
Yubin Ruan's avatar
Yubin Ruan committed
71
72
73
74
75
    # cover its corresponding *_seg.png
    seg = os.path.join(dataset_label_dir, basename+'.png')
    seg_names.append(seg)

  num_images = len(img_names)
76
  num_per_shard = int(math.ceil(num_images / float(_NUM_SHARDS)))
Yubin Ruan's avatar
Yubin Ruan committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

  image_reader = build_data.ImageReader('jpeg', channels=3)
  label_reader = build_data.ImageReader('png', channels=1)

  for shard_id in range(_NUM_SHARDS):
    output_filename = os.path.join(
        FLAGS.output_dir,
        '%s-%05d-of-%05d.tfrecord' % (dataset_split, shard_id, _NUM_SHARDS))
    with tf.python_io.TFRecordWriter(output_filename) as tfrecord_writer:
      start_idx = shard_id * num_per_shard
      end_idx = min((shard_id + 1) * num_per_shard, num_images)
      for i in range(start_idx, end_idx):
        sys.stdout.write('\r>> Converting image %d/%d shard %d' % (
            i + 1, num_images, shard_id))
        sys.stdout.flush()
        # Read the image.
        image_filename = img_names[i]
        image_data = tf.gfile.FastGFile(image_filename, 'r').read()
        height, width = image_reader.read_image_dims(image_data)
        # Read the semantic segmentation annotation.
        seg_filename = seg_names[i]
        seg_data = tf.gfile.FastGFile(seg_filename, 'r').read()
        seg_height, seg_width = label_reader.read_image_dims(seg_data)
        if height != seg_height or width != seg_width:
          raise RuntimeError('Shape mismatched between image and label.')
        # Convert to tf example.
        example = build_data.image_seg_to_tfexample(
            image_data, img_names[i], height, width, seg_data)
        tfrecord_writer.write(example.SerializeToString())
    sys.stdout.write('\n')
    sys.stdout.flush()

109

Yubin Ruan's avatar
Yubin Ruan committed
110
111
def main(unused_argv):
  tf.gfile.MakeDirs(FLAGS.output_dir)
112
113
  _convert_dataset(
      'train', FLAGS.train_image_folder, FLAGS.train_image_label_folder)
Yubin Ruan's avatar
Yubin Ruan committed
114
115
  _convert_dataset('val', FLAGS.val_image_folder, FLAGS.val_image_label_folder)

116

Yubin Ruan's avatar
Yubin Ruan committed
117
118
if __name__ == '__main__':
  tf.app.run()