README.md 1.88 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
# EdgeTPU: Machine Learning Models Optimized for Google Tensor

## Requirements
[![TensorFlow 2.4](https://img.shields.io/badge/TensorFlow-2.4-FF6F00?logo=tensorflow)](https://github.com/tensorflow/tensorflow/releases/tag/v2.4.0)
[![Python 3.7](https://img.shields.io/badge/Python-3.7-3776AB)](https://www.python.org/downloads/release/python-379/)

## Overview

<figure align="center">
<img width=70% src=https://storage.cloud.google.com/tf_model_garden/models/edgetpu/images/neural%20architecture%20search.gif>
  <figcaption>An illustration of NAS to find Edge TPU optimized models</figcaption>
</figure>

This repository contains machine learning models optimized for Edge TPU in
Pixel 6's SoC,
[Google Tensor](https://blog.google/products/pixel/google-tensor-debuts-new-pixel-6-fall/).
We use Neural Architecture Search (NAS) to automate the process of designing ML
models and incentivize the search algorithms to discover models that achieve
higher quality as well as better latency and computing efficiency. This
automation also allows us to scale the development of ML models for a variety of
on-device tasks. We’re making these ML models publicly available through the
Tensorflow model garden and [Tensorflow Hub](https://tfhub.dev/s?q=edgetpu) to
enable researchers and developers to bootstrap further use case development on
Pixel 6.

### [Image Classification](https://github.com/tensorflow/models/tree/master/official/projects/edgetpu/vision#edgetpu-optimized-vision-models)

### [Object Detection](https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md#pixel-6-edge-tpu-models)

### [Semantic Segmentation](https://github.com/tensorflow/models/tree/master/official/projects/edgetpu/vision#edgetpu-optimized-vision-models)


### [Natural Language Understanding](https://github.com/tensorflow/models/tree/master/official/projects/edgetpu/nlp#mobilebert-edgetpu)