schemes.py 8.32 KB
Newer Older
Fan Yang's avatar
Fan Yang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Quantization schemes."""
from typing import Type

# Import libraries

import tensorflow as tf

import tensorflow_model_optimization as tfmot
from official.projects.qat.vision.modeling.layers import nn_blocks as quantized_nn_blocks
from official.projects.qat.vision.modeling.layers import nn_layers as quantized_nn_layers
from official.projects.qat.vision.quantization import configs


keras = tf.keras
default_8bit_transforms = tfmot.quantization.keras.default_8bit.default_8bit_transforms
LayerNode = tfmot.quantization.keras.graph_transformations.transforms.LayerNode
LayerPattern = tfmot.quantization.keras.graph_transformations.transforms.LayerPattern

_QUANTIZATION_WEIGHT_NAMES = [
    'output_max', 'output_min', 'optimizer_step',
    'kernel_min', 'kernel_max',
    'depthwise_kernel_min', 'depthwise_kernel_max',
    'reduce_mean_quantizer_vars_min', 'reduce_mean_quantizer_vars_max']

_ORIGINAL_WEIGHT_NAME = [
    'kernel', 'depthwise_kernel',
    'gamma', 'beta', 'moving_mean', 'moving_variance',
    'bias']


class CustomLayerQuantize(
    tfmot.quantization.keras.graph_transformations.transforms.Transform):
  """Add QAT support for Keras Custom layer."""

  def __init__(self,
               original_layer_pattern: str,
               quantized_layer_class: Type[keras.layers.Layer]):
    super(CustomLayerQuantize, self).__init__()
    self._original_layer_pattern = original_layer_pattern
    self._quantized_layer_class = quantized_layer_class

  def pattern(self) -> LayerPattern:
    """See base class."""
    return LayerPattern(self._original_layer_pattern)

  def _is_quantization_weight_name(self, name):
    simple_name = name.split('/')[-1].split(':')[0]
    if simple_name in _QUANTIZATION_WEIGHT_NAMES:
      return True
    if simple_name in _ORIGINAL_WEIGHT_NAME:
      return False
    raise ValueError('Variable name {} is not supported on '
                     'CustomLayerQuantize({}) transform.'.format(
                         simple_name,
                         self._original_layer_pattern))

  def replacement(self, match_layer: LayerNode) -> LayerNode:
    """See base class."""
    bottleneck_layer = match_layer.layer
    bottleneck_config = bottleneck_layer['config']
    bottleneck_names_and_weights = list(match_layer.names_and_weights)
    quantized_layer = self._quantized_layer_class(
        **bottleneck_config)
    dummy_input_shape = [1, 64, 128, 1]
    # SegmentationHead layer requires a tuple of 2 tensors.
    if isinstance(quantized_layer,
                  quantized_nn_layers.SegmentationHeadQuantized):
      dummy_input_shape = ([1, 1, 1, 1], [1, 1, 1, 1])
    quantized_layer.compute_output_shape(dummy_input_shape)
    quantized_names_and_weights = zip(
        [weight.name for weight in quantized_layer.weights],
        quantized_layer.get_weights())
    match_idx = 0
    names_and_weights = []
    for name_and_weight in quantized_names_and_weights:
      if not self._is_quantization_weight_name(name=name_and_weight[0]):
        name_and_weight = bottleneck_names_and_weights[match_idx]
        match_idx = match_idx + 1
      names_and_weights.append(name_and_weight)

    if match_idx != len(bottleneck_names_and_weights):
      raise ValueError('{}/{} of Bottleneck weights is transformed.'.format(
          match_idx, len(bottleneck_names_and_weights)))
    quantized_layer_config = keras.layers.serialize(quantized_layer)
    quantized_layer_config['name'] = quantized_layer_config['config']['name']
    if bottleneck_layer['class_name'] in [
        'Vision>Conv2DBNBlock', 'Vision>InvertedBottleneckBlock',
        'Vision>SegmentationHead', 'Vision>SpatialPyramidPooling',
        'Vision>ASPP',
        # TODO(yeqing): Removes the Beta layers.
        'Beta>Conv2DBNBlock', 'Beta>InvertedBottleneckBlock',
        'Beta>SegmentationHead', 'Beta>SpatialPyramidPooling', 'Beta>ASPP'
    ]:
      layer_metadata = {'quantize_config': configs.NoOpQuantizeConfig()}
    else:
      layer_metadata = {
          'quantize_config': configs.Default8BitOutputQuantizeConfig()
      }

    return LayerNode(
        quantized_layer_config,
        metadata=layer_metadata,
        names_and_weights=names_and_weights)


class QuantizeLayoutTransform(
    tfmot.quantization.keras.QuantizeLayoutTransform):
  """Default model transformations."""

  def apply(self, model, layer_quantize_map):
    """Implement default 8-bit transforms.

    Currently this means the following.
      1. Pull activations into layers, and apply fuse activations. (TODO)
      2. Modify range in incoming layers for Concat. (TODO)
      3. Fuse Conv2D/DepthwiseConv2D + BN into single layer.

    Args:
      model: Keras model to be quantized.
      layer_quantize_map: Map with keys as layer names, and values as dicts
        containing custom `QuantizeConfig`s which may have been passed with
        layers.

    Returns:
      (Transformed Keras model to better match TensorFlow Lite backend, updated
      layer quantize map.)
    """

    transforms = [
        default_8bit_transforms.InputLayerQuantize(),
        default_8bit_transforms.SeparableConv1DQuantize(),
        default_8bit_transforms.SeparableConvQuantize(),
        default_8bit_transforms.Conv2DReshapeBatchNormReLUQuantize(),
        default_8bit_transforms.Conv2DReshapeBatchNormActivationQuantize(),
        default_8bit_transforms.Conv2DBatchNormReLUQuantize(),
        default_8bit_transforms.Conv2DBatchNormActivationQuantize(),
        default_8bit_transforms.Conv2DReshapeBatchNormQuantize(),
        default_8bit_transforms.Conv2DBatchNormQuantize(),
        default_8bit_transforms.ConcatTransform6Inputs(),
        default_8bit_transforms.ConcatTransform5Inputs(),
        default_8bit_transforms.ConcatTransform4Inputs(),
        default_8bit_transforms.ConcatTransform3Inputs(),
        default_8bit_transforms.ConcatTransform(),
        default_8bit_transforms.LayerReLUQuantize(),
        default_8bit_transforms.LayerReluActivationQuantize(),
        CustomLayerQuantize('Vision>BottleneckBlock',
                            quantized_nn_blocks.BottleneckBlockQuantized),
        CustomLayerQuantize(
            'Vision>InvertedBottleneckBlock',
            quantized_nn_blocks.InvertedBottleneckBlockQuantized),
        CustomLayerQuantize('Vision>Conv2DBNBlock',
                            quantized_nn_blocks.Conv2DBNBlockQuantized),
        CustomLayerQuantize('Vision>SegmentationHead',
                            quantized_nn_layers.SegmentationHeadQuantized),
        CustomLayerQuantize('Vision>SpatialPyramidPooling',
                            quantized_nn_layers.SpatialPyramidPoolingQuantized),
        CustomLayerQuantize('Vision>ASPP', quantized_nn_layers.ASPPQuantized),
        # TODO(yeqing): Remove the `Beta` components.
        CustomLayerQuantize('Beta>BottleneckBlock',
                            quantized_nn_blocks.BottleneckBlockQuantized),
        CustomLayerQuantize(
            'Beta>InvertedBottleneckBlock',
            quantized_nn_blocks.InvertedBottleneckBlockQuantized),
        CustomLayerQuantize('Beta>Conv2DBNBlock',
                            quantized_nn_blocks.Conv2DBNBlockQuantized),
        CustomLayerQuantize('Beta>SegmentationHead',
                            quantized_nn_layers.SegmentationHeadQuantized),
        CustomLayerQuantize('Beta>SpatialPyramidPooling',
                            quantized_nn_layers.SpatialPyramidPoolingQuantized),
        CustomLayerQuantize('Beta>ASPP', quantized_nn_layers.ASPPQuantized)
    ]
    return tfmot.quantization.keras.graph_transformations.model_transformer.ModelTransformer(
        model, transforms,
        set(layer_quantize_map.keys()), layer_quantize_map).transform()


class Default8BitQuantizeScheme(
    tfmot.quantization.keras.default_8bit.Default8BitQuantizeScheme):

  def get_layout_transformer(self):
    return QuantizeLayoutTransform()