segmentation_metrics.py 7.23 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Metrics for segmentation."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
16

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
17
18
import tensorflow as tf

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
19
20
from official.vision.ops import box_ops
from official.vision.ops import spatial_transform_ops
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
21
22
23
24
25
26
27
28
29
30
31
32


class MeanIoU(tf.keras.metrics.MeanIoU):
  """Mean IoU metric for semantic segmentation.

  This class utilizes tf.keras.metrics.MeanIoU to perform batched mean iou when
  both input images and groundtruth masks are resized to the same size
  (rescale_predictions=False). It also computes mean iou on groundtruth original
  sizes, in which case, each prediction is rescaled back to the original image
  size.
  """

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
33
34
35
36
37
  def __init__(self,
               num_classes,
               rescale_predictions=False,
               name=None,
               dtype=None):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
    """Constructs Segmentation evaluator class.

    Args:
      num_classes: `int`, number of classes.
      rescale_predictions: `bool`, whether to scale back prediction to original
        image sizes. If True, y_true['image_info'] is used to rescale
        predictions.
      name: `str`, name of the metric instance..
      dtype: data type of the metric result.
    """
    self._rescale_predictions = rescale_predictions
    super().__init__(num_classes=num_classes, name=name, dtype=dtype)

  def update_state(self, y_true, y_pred):
    """Updates metric state.

    Args:
      y_true: `dict`, dictionary with the following name, and key values.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
56
57
        - masks: [batch, height, width, 1], groundtruth masks.
        - valid_masks: [batch, height, width, 1], valid elements in the mask.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
58
59
60
61
62
63
64
        - image_info: [batch, 4, 2], a tensor that holds information about
          original and preprocessed images. Each entry is in the format of
          [[original_height, original_width], [input_height, input_width],
          [y_scale, x_scale], [y_offset, x_offset]], where [desired_height,
          desired_width] is the actual scaled image size, and [y_scale, x_scale]
          is the scaling factor, which is the ratio of scaled dimension /
          original dimension.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
65
      y_pred: Tensor [batch, height_p, width_p, num_classes], predicated masks.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
    """
    predictions = y_pred
    masks = y_true['masks']
    valid_masks = y_true['valid_masks']
    images_info = y_true['image_info']

    if isinstance(predictions, tuple) or isinstance(predictions, list):
      predictions = tf.concat(predictions, axis=0)
      masks = tf.concat(masks, axis=0)
      valid_masks = tf.concat(valid_masks, axis=0)
      images_info = tf.concat(images_info, axis=0)

    # Ignore mask elements is set to zero for argmax op.
    masks = tf.where(valid_masks, masks, tf.zeros_like(masks))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
80
    masks_size = tf.shape(masks)[1:3]
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
81
82

    if self._rescale_predictions:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
83
84
85
86
87
88
89
90
91
92
      # Scale back predictions to original image shapes and pad to mask size.
      # Note: instead of cropping the masks to image shape (dynamic), here we
      # pad the rescaled predictions to mask size (fixed). And update the
      # valid_masks to mask out the pixels outside the original image shape.
      predictions, image_shape_masks = _rescale_and_pad_predictions(
          predictions, images_info, output_size=masks_size)
      # Only the area within the original image shape is valid.
      # (batch_size, height, width, 1)
      valid_masks = tf.cast(valid_masks, tf.bool) & tf.expand_dims(
          image_shape_masks, axis=-1)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
93
94
    else:
      predictions = tf.image.resize(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
95
          predictions, masks_size, method=tf.image.ResizeMethod.BILINEAR)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
96

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
97
98
99
100
101
102
103
104
105
    predictions = tf.argmax(predictions, axis=3)
    flatten_predictions = tf.reshape(predictions, shape=[-1])
    flatten_masks = tf.reshape(masks, shape=[-1])
    flatten_valid_masks = tf.reshape(valid_masks, shape=[-1])

    super().update_state(
        y_true=flatten_masks,
        y_pred=flatten_predictions,
        sample_weight=tf.cast(flatten_valid_masks, tf.float32))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
106
107


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
108
109
class PerClassIoU(MeanIoU):
  """Per class IoU metric for semantic segmentation."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
110

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
111
112
113
114
115
116
117
118
  def result(self):
    """Compute IoU for each class via the confusion matrix."""
    sum_over_row = tf.cast(
        tf.reduce_sum(self.total_cm, axis=0), dtype=self._dtype)
    sum_over_col = tf.cast(
        tf.reduce_sum(self.total_cm, axis=1), dtype=self._dtype)
    true_positives = tf.cast(
        tf.linalg.tensor_diag_part(self.total_cm), dtype=self._dtype)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
119

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
120
121
122
    # sum_over_row + sum_over_col =
    #     2 * true_positives + false_positives + false_negatives.
    denominator = sum_over_row + sum_over_col - true_positives
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
123

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
124
    return tf.math.divide_no_nan(true_positives, denominator)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159


def _rescale_and_pad_predictions(predictions, images_info, output_size):
  """Scales back predictions to original image shapes and pads to output size.

  Args:
    predictions: A tensor in shape [batch, height, width, num_classes] which
      stores the model predictions.
    images_info: A tensor in shape [batch, 4, 2] that holds information about
      original and preprocessed images. Each entry is in the format of
      [[original_height, original_width], [input_height, input_width], [y_scale,
      x_scale], [y_offset, x_offset]], where [desired_height, desired_width] is
      the actual scaled image size, and [y_scale, x_scale] is the scaling
      factor, which is the ratio of scaled dimension / original dimension.
    output_size: A list/tuple/tensor stores the size of the padded output in
      [output_height, output_width].

  Returns:
    predictions: A tensor in shape [batch, output_height, output_width,
      num_classes] which stores the rescaled and padded predictions.
    image_shape_masks: A bool tensor in shape [batch, output_height,
      output_width] where the pixels inside the original image shape are true,
      otherwise false.
  """
  # (batch_size, 2)
  image_shape = tf.cast(images_info[:, 0, :], tf.int32)
  desired_size = tf.cast(images_info[:, 1, :], tf.float32)
  image_scale = tf.cast(images_info[:, 2, :], tf.float32)
  offset = tf.cast(images_info[:, 3, :], tf.int32)
  rescale_size = tf.cast(tf.math.ceil(desired_size / image_scale), tf.int32)

  # Rescale the predictions, then crop to the original image shape and
  # finally pad zeros to match the mask size.
  predictions = (
      spatial_transform_ops.bilinear_resize_with_crop_and_pad(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
160
          predictions,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
          rescale_size,
          crop_offset=offset,
          crop_size=image_shape,
          output_size=output_size))

  # (batch_size, 2)
  y0_x0 = tf.broadcast_to(
      tf.constant([[0, 0]], dtype=image_shape.dtype), tf.shape(image_shape))
  # (batch_size, 4)
  image_shape_bbox = tf.concat([y0_x0, image_shape], axis=1)
  # (batch_size, height, width)
  image_shape_masks = box_ops.bbox2mask(
      bbox=image_shape_bbox,
      image_height=output_size[0],
      image_width=output_size[1],
      dtype=tf.bool)

  return predictions, image_shape_masks