mobilenet_v1_train.py 7.32 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Build and train mobilenet_v1 with options for quantization."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf

from datasets import dataset_factory
from nets import mobilenet_v1
from preprocessing import preprocessing_factory

slim = tf.contrib.slim

flags = tf.app.flags

flags.DEFINE_string('master', '', 'Session master')
flags.DEFINE_integer('task', 0, 'Task')
flags.DEFINE_integer('ps_tasks', 0, 'Number of ps')
flags.DEFINE_integer('batch_size', 64, 'Batch size')
flags.DEFINE_integer('num_classes', 1001, 'Number of classes to distinguish')
flags.DEFINE_integer('number_of_steps', None,
                     'Number of training steps to perform before stopping')
flags.DEFINE_integer('image_size', 224, 'Input image resolution')
flags.DEFINE_float('depth_multiplier', 1.0, 'Depth multiplier for mobilenet')
flags.DEFINE_bool('quantize', False, 'Quantize training')
flags.DEFINE_string('fine_tune_checkpoint', '',
                    'Checkpoint from which to start finetuning.')
43
44
flags.DEFINE_string('checkpoint_dir', '',
                    'Directory for writing training checkpoints and logs')
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
flags.DEFINE_string('dataset_dir', '', 'Location of dataset')
flags.DEFINE_integer('log_every_n_steps', 100, 'Number of steps per log')
flags.DEFINE_integer('save_summaries_secs', 100,
                     'How often to save summaries, secs')
flags.DEFINE_integer('save_interval_secs', 100,
                     'How often to save checkpoints, secs')

FLAGS = flags.FLAGS

_LEARNING_RATE_DECAY_FACTOR = 0.94


def get_learning_rate():
  if FLAGS.fine_tune_checkpoint:
    # If we are fine tuning a checkpoint we need to start at a lower learning
    # rate since we are farther along on training.
    return 1e-4
  else:
    return 0.045


def get_quant_delay():
  if FLAGS.fine_tune_checkpoint:
    # We can start quantizing immediately if we are finetuning.
    return 0
  else:
    # We need to wait for the model to train a bit before we quantize if we are
    # training from scratch.
    return 250000


def imagenet_input(is_training):
  """Data reader for imagenet.

  Reads in imagenet data and performs pre-processing on the images.

  Args:
     is_training: bool specifying if train or validation dataset is needed.
  Returns:
     A batch of images and labels.
  """
  if is_training:
    dataset = dataset_factory.get_dataset('imagenet', 'train',
                                          FLAGS.dataset_dir)
  else:
    dataset = dataset_factory.get_dataset('imagenet', 'validation',
                                          FLAGS.dataset_dir)

  provider = slim.dataset_data_provider.DatasetDataProvider(
      dataset,
      shuffle=is_training,
      common_queue_capacity=2 * FLAGS.batch_size,
      common_queue_min=FLAGS.batch_size)
  [image, label] = provider.get(['image', 'label'])

  image_preprocessing_fn = preprocessing_factory.get_preprocessing(
      'mobilenet_v1', is_training=is_training)

  image = image_preprocessing_fn(image, FLAGS.image_size, FLAGS.image_size)

  images, labels = tf.train.batch(
      [image, label],
      batch_size=FLAGS.batch_size,
      num_threads=4,
      capacity=5 * FLAGS.batch_size)
  labels = slim.one_hot_encoding(labels, FLAGS.num_classes)
  return images, labels


def build_model():
  """Builds graph for model to train with rewrites for quantization.

  Returns:
    g: Graph with fake quantization ops and batch norm folding suitable for
    training quantized weights.
    train_tensor: Train op for execution during training.
  """
  g = tf.Graph()
  with g.as_default(), tf.device(
      tf.train.replica_device_setter(FLAGS.ps_tasks)):
    inputs, labels = imagenet_input(is_training=True)
    with slim.arg_scope(mobilenet_v1.mobilenet_v1_arg_scope(is_training=True)):
      logits, _ = mobilenet_v1.mobilenet_v1(
          inputs,
          is_training=True,
          depth_multiplier=FLAGS.depth_multiplier,
          num_classes=FLAGS.num_classes)

    tf.losses.softmax_cross_entropy(labels, logits)

    # Call rewriter to produce graph with fake quant ops and folded batch norms
    # quant_delay delays start of quantization till quant_delay steps, allowing
    # for better model accuracy.
    if FLAGS.quantize:
      tf.contrib.quantize.create_training_graph(quant_delay=get_quant_delay())

    total_loss = tf.losses.get_total_loss(name='total_loss')
    # Configure the learning rate using an exponential decay.
    num_epochs_per_decay = 2.5
    imagenet_size = 1271167
    decay_steps = int(imagenet_size / FLAGS.batch_size * num_epochs_per_decay)

    learning_rate = tf.train.exponential_decay(
        get_learning_rate(),
        tf.train.get_or_create_global_step(),
        decay_steps,
        _LEARNING_RATE_DECAY_FACTOR,
        staircase=True)
    opt = tf.train.GradientDescentOptimizer(learning_rate)

    train_tensor = slim.learning.create_train_op(
        total_loss,
        optimizer=opt)

  slim.summaries.add_scalar_summary(total_loss, 'total_loss', 'losses')
  slim.summaries.add_scalar_summary(learning_rate, 'learning_rate', 'training')
  return g, train_tensor


def get_checkpoint_init_fn():
  """Returns the checkpoint init_fn if the checkpoint is provided."""
  if FLAGS.fine_tune_checkpoint:
    variables_to_restore = slim.get_variables_to_restore()
    global_step_reset = tf.assign(tf.train.get_or_create_global_step(), 0)
    # When restoring from a floating point model, the min/max values for
    # quantized weights and activations are not present.
    # We instruct slim to ignore variables that are missing during restoration
    # by setting ignore_missing_vars=True
    slim_init_fn = slim.assign_from_checkpoint_fn(
        FLAGS.fine_tune_checkpoint,
        variables_to_restore,
        ignore_missing_vars=True)

    def init_fn(sess):
      slim_init_fn(sess)
      # If we are restoring from a floating point model, we need to initialize
      # the global step to zero for the exponential decay to result in
      # reasonable learning rates.
      sess.run(global_step_reset)
    return init_fn
  else:
    return None


def train_model():
  """Trains mobilenet_v1."""
  g, train_tensor = build_model()
  with g.as_default():
    slim.learning.train(
        train_tensor,
195
        FLAGS.checkpoint_dir,
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
        is_chief=(FLAGS.task == 0),
        master=FLAGS.master,
        log_every_n_steps=FLAGS.log_every_n_steps,
        graph=g,
        number_of_steps=FLAGS.number_of_steps,
        save_summaries_secs=FLAGS.save_summaries_secs,
        save_interval_secs=FLAGS.save_interval_secs,
        init_fn=get_checkpoint_init_fn(),
        global_step=tf.train.get_global_step())


def main(unused_arg):
  train_model()


if __name__ == '__main__':
  tf.app.run(main)