model_lib_v2.py 47.5 KB
Newer Older
pkulzc's avatar
pkulzc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
r"""Constructs model, inputs, and training environment."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import copy
22
import os
pkulzc's avatar
pkulzc committed
23
import time
Pankaj Kanwar's avatar
Pankaj Kanwar committed
24
import numpy as np
pkulzc's avatar
pkulzc committed
25

26
import tensorflow.compat.v1 as tf
27
import tensorflow.compat.v2 as tf2
pkulzc's avatar
pkulzc committed
28
29
30
31
32
33

from object_detection import eval_util
from object_detection import inputs
from object_detection import model_lib
from object_detection.builders import optimizer_builder
from object_detection.core import standard_fields as fields
34
from object_detection.protos import train_pb2
pkulzc's avatar
pkulzc committed
35
36
37
from object_detection.utils import config_util
from object_detection.utils import label_map_util
from object_detection.utils import ops
38
39
from object_detection.utils import visualization_utils as vutils

pkulzc's avatar
pkulzc committed
40
41
42
43

MODEL_BUILD_UTIL_MAP = model_lib.MODEL_BUILD_UTIL_MAP


44
45
46
47
48
49
RESTORE_MAP_ERROR_TEMPLATE = (
    'Since we are restoring a v2 style checkpoint'
    ' restore_map was expected to return a (str -> Model) mapping,'
    ' but we received a ({} -> {}) mapping instead.'
)

pkulzc's avatar
pkulzc committed
50
51
52

def _compute_losses_and_predictions_dicts(
    model, features, labels,
53
    add_regularization_loss=True):
pkulzc's avatar
pkulzc committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
  """Computes the losses dict and predictions dict for a model on inputs.

  Args:
    model: a DetectionModel (based on Keras).
    features: Dictionary of feature tensors from the input dataset.
      Should be in the format output by `inputs.train_input` and
      `inputs.eval_input`.
        features[fields.InputDataFields.image] is a [batch_size, H, W, C]
          float32 tensor with preprocessed images.
        features[HASH_KEY] is a [batch_size] int32 tensor representing unique
          identifiers for the images.
        features[fields.InputDataFields.true_image_shape] is a [batch_size, 3]
          int32 tensor representing the true image shapes, as preprocessed
          images could be padded.
        features[fields.InputDataFields.original_image] (optional) is a
          [batch_size, H, W, C] float32 tensor with original images.
    labels: A dictionary of groundtruth tensors post-unstacking. The original
      labels are of the form returned by `inputs.train_input` and
      `inputs.eval_input`. The shapes may have been modified by unstacking with
      `model_lib.unstack_batch`. However, the dictionary includes the following
      fields.
        labels[fields.InputDataFields.num_groundtruth_boxes] is a
          int32 tensor indicating the number of valid groundtruth boxes
          per image.
        labels[fields.InputDataFields.groundtruth_boxes] is a float32 tensor
          containing the corners of the groundtruth boxes.
        labels[fields.InputDataFields.groundtruth_classes] is a float32
          one-hot tensor of classes.
        labels[fields.InputDataFields.groundtruth_weights] is a float32 tensor
          containing groundtruth weights for the boxes.
        -- Optional --
        labels[fields.InputDataFields.groundtruth_instance_masks] is a
          float32 tensor containing only binary values, which represent
          instance masks for objects.
        labels[fields.InputDataFields.groundtruth_keypoints] is a
          float32 tensor containing keypoints for each box.
90
91
92
93
94
95
        labels[fields.InputDataFields.groundtruth_dp_num_points] is an int32
          tensor with the number of sampled DensePose points per object.
        labels[fields.InputDataFields.groundtruth_dp_part_ids] is an int32
          tensor with the DensePose part ids (0-indexed) per object.
        labels[fields.InputDataFields.groundtruth_dp_surface_coords] is a
          float32 tensor with the DensePose surface coordinates.
96
97
98
99
        labels[fields.InputDataFields.groundtruth_group_of] is a tf.bool tensor
          containing group_of annotations.
        labels[fields.InputDataFields.groundtruth_labeled_classes] is a float32
          k-hot tensor of classes.
100
101
        labels[fields.InputDataFields.groundtruth_track_ids] is a int32
          tensor of track IDs.
102
103
104
105
        labels[fields.InputDataFields.groundtruth_keypoint_depths] is a
          float32 tensor containing keypoint depths information.
        labels[fields.InputDataFields.groundtruth_keypoint_depth_weights] is a
          float32 tensor containing the weights of the keypoint depth feature.
pkulzc's avatar
pkulzc committed
106
107
108
109
110
111
112
113
114
115
116
117
    add_regularization_loss: Whether or not to include the model's
      regularization loss in the losses dictionary.

  Returns:
    A tuple containing the losses dictionary (with the total loss under
    the key 'Loss/total_loss'), and the predictions dictionary produced by
    `model.predict`.

  """
  model_lib.provide_groundtruth(model, labels)
  preprocessed_images = features[fields.InputDataFields.image]

118
119
  prediction_dict = model.predict(
      preprocessed_images,
Kaushik Shivakumar's avatar
Kaushik Shivakumar committed
120
121
      features[fields.InputDataFields.true_image_shape],
      **model.get_side_inputs(features))
122
  prediction_dict = ops.bfloat16_to_float32_nested(prediction_dict)
pkulzc's avatar
pkulzc committed
123
124
125
126
127
128
129
130
131
132

  losses_dict = model.loss(
      prediction_dict, features[fields.InputDataFields.true_image_shape])
  losses = [loss_tensor for loss_tensor in losses_dict.values()]
  if add_regularization_loss:
    # TODO(kaftan): As we figure out mixed precision & bfloat 16, we may
    ## need to convert these regularization losses from bfloat16 to float32
    ## as well.
    regularization_losses = model.regularization_losses()
    if regularization_losses:
133
134
      regularization_losses = ops.bfloat16_to_float32_nested(
          regularization_losses)
pkulzc's avatar
pkulzc committed
135
136
137
138
139
140
141
142
143
144
145
      regularization_loss = tf.add_n(
          regularization_losses, name='regularization_loss')
      losses.append(regularization_loss)
      losses_dict['Loss/regularization_loss'] = regularization_loss

  total_loss = tf.add_n(losses, name='total_loss')
  losses_dict['Loss/total_loss'] = total_loss

  return losses_dict, prediction_dict


146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
def _ensure_model_is_built(model, input_dataset, unpad_groundtruth_tensors):
  """Ensures that model variables are all built, by running on a dummy input.

  Args:
    model: A DetectionModel to be built.
    input_dataset: The tf.data Dataset the model is being trained on. Needed to
      get the shapes for the dummy loss computation.
    unpad_groundtruth_tensors: A parameter passed to unstack_batch.
  """
  features, labels = iter(input_dataset).next()

  @tf.function
  def _dummy_computation_fn(features, labels):
    model._is_training = False  # pylint: disable=protected-access
    tf.keras.backend.set_learning_phase(False)

    labels = model_lib.unstack_batch(
        labels, unpad_groundtruth_tensors=unpad_groundtruth_tensors)

    return _compute_losses_and_predictions_dicts(model, features, labels)

  strategy = tf.compat.v2.distribute.get_strategy()
  if hasattr(tf.distribute.Strategy, 'run'):
    strategy.run(
        _dummy_computation_fn, args=(
            features,
            labels,
        ))
  else:
    strategy.experimental_run_v2(
        _dummy_computation_fn, args=(
            features,
            labels,
        ))


pkulzc's avatar
pkulzc committed
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
# TODO(kaftan): Explore removing learning_rate from this method & returning
## The full losses dict instead of just total_loss, then doing all summaries
## saving in a utility method called by the outer training loop.
# TODO(kaftan): Explore adding gradient summaries
def eager_train_step(detection_model,
                     features,
                     labels,
                     unpad_groundtruth_tensors,
                     optimizer,
                     learning_rate,
                     add_regularization_loss=True,
                     clip_gradients_value=None,
                     global_step=None,
                     num_replicas=1.0):
  """Process a single training batch.

  This method computes the loss for the model on a single training batch,
  while tracking the gradients with a gradient tape. It then updates the
  model variables with the optimizer, clipping the gradients if
  clip_gradients_value is present.

  This method can run eagerly or inside a tf.function.

  Args:
    detection_model: A DetectionModel (based on Keras) to train.
    features: Dictionary of feature tensors from the input dataset.
      Should be in the format output by `inputs.train_input.
        features[fields.InputDataFields.image] is a [batch_size, H, W, C]
          float32 tensor with preprocessed images.
        features[HASH_KEY] is a [batch_size] int32 tensor representing unique
          identifiers for the images.
        features[fields.InputDataFields.true_image_shape] is a [batch_size, 3]
          int32 tensor representing the true image shapes, as preprocessed
          images could be padded.
        features[fields.InputDataFields.original_image] (optional, not used
          during training) is a
          [batch_size, H, W, C] float32 tensor with original images.
    labels: A dictionary of groundtruth tensors. This method unstacks
      these labels using model_lib.unstack_batch. The stacked labels are of
      the form returned by `inputs.train_input` and `inputs.eval_input`.
        labels[fields.InputDataFields.num_groundtruth_boxes] is a [batch_size]
          int32 tensor indicating the number of valid groundtruth boxes
          per image.
        labels[fields.InputDataFields.groundtruth_boxes] is a
          [batch_size, num_boxes, 4] float32 tensor containing the corners of
          the groundtruth boxes.
        labels[fields.InputDataFields.groundtruth_classes] is a
          [batch_size, num_boxes, num_classes] float32 one-hot tensor of
          classes. num_classes includes the background class.
        labels[fields.InputDataFields.groundtruth_weights] is a
          [batch_size, num_boxes] float32 tensor containing groundtruth weights
          for the boxes.
        -- Optional --
        labels[fields.InputDataFields.groundtruth_instance_masks] is a
          [batch_size, num_boxes, H, W] float32 tensor containing only binary
          values, which represent instance masks for objects.
        labels[fields.InputDataFields.groundtruth_keypoints] is a
          [batch_size, num_boxes, num_keypoints, 2] float32 tensor containing
          keypoints for each box.
241
242
243
244
245
246
247
248
249
250
251
        labels[fields.InputDataFields.groundtruth_dp_num_points] is a
          [batch_size, num_boxes] int32 tensor with the number of DensePose
          sampled points per instance.
        labels[fields.InputDataFields.groundtruth_dp_part_ids] is a
          [batch_size, num_boxes, max_sampled_points] int32 tensor with the
          part ids (0-indexed) for each instance.
        labels[fields.InputDataFields.groundtruth_dp_surface_coords] is a
          [batch_size, num_boxes, max_sampled_points, 4] float32 tensor with the
          surface coordinates for each point. Each surface coordinate is of the
          form (y, x, v, u) where (y, x) are normalized image locations and
          (v, u) are part-relative normalized surface coordinates.
252
253
        labels[fields.InputDataFields.groundtruth_labeled_classes] is a float32
          k-hot tensor of classes.
254
255
        labels[fields.InputDataFields.groundtruth_track_ids] is a int32
          tensor of track IDs.
256
257
258
259
        labels[fields.InputDataFields.groundtruth_keypoint_depths] is a
          float32 tensor containing keypoint depths information.
        labels[fields.InputDataFields.groundtruth_keypoint_depth_weights] is a
          float32 tensor containing the weights of the keypoint depth feature.
pkulzc's avatar
pkulzc committed
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
    unpad_groundtruth_tensors: A parameter passed to unstack_batch.
    optimizer: The training optimizer that will update the variables.
    learning_rate: The learning rate tensor for the current training step.
      This is used only for TensorBoard logging purposes, it does not affect
       model training.
    add_regularization_loss: Whether or not to include the model's
      regularization loss in the losses dictionary.
    clip_gradients_value: If this is present, clip the gradients global norm
      at this value using `tf.clip_by_global_norm`.
    global_step: The current training step. Used for TensorBoard logging
      purposes. This step is not updated by this function and must be
      incremented separately.
    num_replicas: The number of replicas in the current distribution strategy.
      This is used to scale the total loss so that training in a distribution
      strategy works correctly.

  Returns:
    The total loss observed at this training step
  """
  # """Execute a single training step in the TF v2 style loop."""
  is_training = True

  detection_model._is_training = is_training  # pylint: disable=protected-access
  tf.keras.backend.set_learning_phase(is_training)

  labels = model_lib.unstack_batch(
      labels, unpad_groundtruth_tensors=unpad_groundtruth_tensors)

  with tf.GradientTape() as tape:
    losses_dict, _ = _compute_losses_and_predictions_dicts(
290
        detection_model, features, labels, add_regularization_loss)
pkulzc's avatar
pkulzc committed
291
292
293
294
295
296
297
298

    total_loss = losses_dict['Loss/total_loss']

    # Normalize loss for num replicas
    total_loss = tf.math.divide(total_loss,
                                tf.constant(num_replicas, dtype=tf.float32))
    losses_dict['Loss/normalized_total_loss'] = total_loss

299
300
301
  for loss_type in losses_dict:
    tf.compat.v2.summary.scalar(
        loss_type, losses_dict[loss_type], step=global_step)
pkulzc's avatar
pkulzc committed
302
303
304
305
306
307
308
309

  trainable_variables = detection_model.trainable_variables

  gradients = tape.gradient(total_loss, trainable_variables)

  if clip_gradients_value:
    gradients, _ = tf.clip_by_global_norm(gradients, clip_gradients_value)
  optimizer.apply_gradients(zip(gradients, trainable_variables))
310
  tf.compat.v2.summary.scalar('learning_rate', learning_rate, step=global_step)
311
312
313
314
315
  tf.compat.v2.summary.image(
      name='train_input_images',
      step=global_step,
      data=features[fields.InputDataFields.image],
      max_outputs=3)
pkulzc's avatar
pkulzc committed
316
317
318
  return total_loss


319
320
321
322
def validate_tf_v2_checkpoint_restore_map(checkpoint_restore_map):
  """Ensure that given dict is a valid TF v2 style restore map.

  Args:
323
324
    checkpoint_restore_map: A nested dict mapping strings to
      tf.keras.Model objects.
325
326
327
328
329
330
331
332

  Raises:
    ValueError: If they keys in checkpoint_restore_map are not strings or if
      the values are not keras Model objects.

  """

  for key, value in checkpoint_restore_map.items():
333
334
335
    if not (isinstance(key, str) and
            (isinstance(value, tf.Module)
             or isinstance(value, tf.train.Checkpoint))):
336
337
338
339
340
341
      if isinstance(key, str) and isinstance(value, dict):
        validate_tf_v2_checkpoint_restore_map(value)
      else:
        raise TypeError(
            RESTORE_MAP_ERROR_TEMPLATE.format(key.__class__.__name__,
                                              value.__class__.__name__))
342
343


344
345
346
347
348
349
def is_object_based_checkpoint(checkpoint_path):
  """Returns true if `checkpoint_path` points to an object-based checkpoint."""
  var_names = [var[0] for var in tf.train.list_variables(checkpoint_path)]
  return '_CHECKPOINTABLE_OBJECT_GRAPH' in var_names


350
351
352
def load_fine_tune_checkpoint(model, checkpoint_path, checkpoint_type,
                              checkpoint_version, run_model_on_dummy_input,
                              input_dataset, unpad_groundtruth_tensors):
pkulzc's avatar
pkulzc committed
353
354
355
356
357
358
  """Load a fine tuning classification or detection checkpoint.

  To make sure the model variables are all built, this method first executes
  the model by computing a dummy loss. (Models might not have built their
  variables before their first execution)

359
  It then loads an object-based classification or detection checkpoint.
pkulzc's avatar
pkulzc committed
360
361
362
363
364
365
366
367
368
369
370

  This method updates the model in-place and does not return a value.

  Args:
    model: A DetectionModel (based on Keras) to load a fine-tuning
      checkpoint for.
    checkpoint_path: Directory with checkpoints file or path to checkpoint.
    checkpoint_type: Whether to restore from a full detection
      checkpoint (with compatible variable names) or to restore from a
      classification checkpoint for initialization prior to training.
      Valid values: `detection`, `classification`.
371
    checkpoint_version: train_pb2.CheckpointVersion.V1 or V2 enum indicating
372
373
      whether to load checkpoints in V1 style or V2 style.  In this binary
      we only support V2 style (object-based) checkpoints.
374
375
376
    run_model_on_dummy_input: Whether to run the model on a dummy input in order
      to ensure that all model variables have been built successfully before
      loading the fine_tune_checkpoint.
pkulzc's avatar
pkulzc committed
377
378
379
    input_dataset: The tf.data Dataset the model is being trained on. Needed
      to get the shapes for the dummy loss computation.
    unpad_groundtruth_tensors: A parameter passed to unstack_batch.
380
381
382
383
384

  Raises:
    IOError: if `checkpoint_path` does not point at a valid object-based
      checkpoint
    ValueError: if `checkpoint_version` is not train_pb2.CheckpointVersion.V2
pkulzc's avatar
pkulzc committed
385
  """
386
387
388
389
390
  if not is_object_based_checkpoint(checkpoint_path):
    raise IOError('Checkpoint is expected to be an object-based checkpoint.')
  if checkpoint_version == train_pb2.CheckpointVersion.V1:
    raise ValueError('Checkpoint version should be V2')

391
392
  if run_model_on_dummy_input:
    _ensure_model_is_built(model, input_dataset, unpad_groundtruth_tensors)
393

394
395
396
397
398
  restore_from_objects_dict = model.restore_from_objects(
      fine_tune_checkpoint_type=checkpoint_type)
  validate_tf_v2_checkpoint_restore_map(restore_from_objects_dict)
  ckpt = tf.train.Checkpoint(**restore_from_objects_dict)
  ckpt.restore(checkpoint_path).assert_existing_objects_matched()
399
400


401
def get_filepath(strategy, filepath):
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
  """Get appropriate filepath for worker.

  Args:
    strategy: A tf.distribute.Strategy object.
    filepath: A path to where the Checkpoint object is stored.

  Returns:
    A temporary filepath for non-chief workers to use or the original filepath
    for the chief.
  """
  if strategy.extended.should_checkpoint:
    return filepath
  else:
    # TODO(vighneshb) Replace with the public API when TF exposes it.
    task_id = strategy.extended._task_id  # pylint:disable=protected-access
    return os.path.join(filepath, 'temp_worker_{:03d}'.format(task_id))


420
def clean_temporary_directories(strategy, filepath):
421
422
423
424
425
426
427
428
429
430
431
  """Temporary directory clean up for MultiWorker Mirrored Strategy.

  This is needed for all non-chief workers.

  Args:
    strategy: A tf.distribute.Strategy object.
    filepath: The filepath for the temporary directory.
  """
  if not strategy.extended.should_checkpoint:
    if tf.io.gfile.exists(filepath) and tf.io.gfile.isdir(filepath):
      tf.io.gfile.rmtree(filepath)
pkulzc's avatar
pkulzc committed
432
433
434
435
436
437
438
439
440


def train_loop(
    pipeline_config_path,
    model_dir,
    config_override=None,
    train_steps=None,
    use_tpu=False,
    save_final_config=False,
441
    checkpoint_every_n=1000,
442
    checkpoint_max_to_keep=7,
443
    record_summaries=True,
Pankaj Kanwar's avatar
Pankaj Kanwar committed
444
    performance_summary_exporter=None,
445
    **kwargs):
pkulzc's avatar
pkulzc committed
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
  """Trains a model using eager + functions.

  This method:
    1. Processes the pipeline configs
    2. (Optionally) saves the as-run config
    3. Builds the model & optimizer
    4. Gets the training input data
    5. Loads a fine-tuning detection or classification checkpoint if requested
    6. Loops over the train data, executing distributed training steps inside
       tf.functions.
    7. Checkpoints the model every `checkpoint_every_n` training steps.
    8. Logs the training metrics as TensorBoard summaries.

  Args:
    pipeline_config_path: A path to a pipeline config file.
    model_dir:
      The directory to save checkpoints and summaries to.
    config_override: A pipeline_pb2.TrainEvalPipelineConfig text proto to
      override the config from `pipeline_config_path`.
    train_steps: Number of training steps. If None, the number of training steps
      is set from the `TrainConfig` proto.
    use_tpu: Boolean, whether training and evaluation should run on TPU.
    save_final_config: Whether to save final config (obtained after applying
      overrides) to `model_dir`.
    checkpoint_every_n:
      Checkpoint every n training steps.
472
473
    checkpoint_max_to_keep:
      int, the number of most recent checkpoints to keep in the model directory.
474
    record_summaries: Boolean, whether or not to record summaries.
Pankaj Kanwar's avatar
Pankaj Kanwar committed
475
    performance_summary_exporter: function for exporting performance metrics.
pkulzc's avatar
pkulzc committed
476
477
478
479
480
481
482
483
484
    **kwargs: Additional keyword arguments for configuration override.
  """
  ## Parse the configs
  get_configs_from_pipeline_file = MODEL_BUILD_UTIL_MAP[
      'get_configs_from_pipeline_file']
  merge_external_params_with_configs = MODEL_BUILD_UTIL_MAP[
      'merge_external_params_with_configs']
  create_pipeline_proto_from_configs = MODEL_BUILD_UTIL_MAP[
      'create_pipeline_proto_from_configs']
Pankaj Kanwar's avatar
Pankaj Kanwar committed
485
  steps_per_sec_list = []
pkulzc's avatar
pkulzc committed
486
487
488
489
490
491
492
493

  configs = get_configs_from_pipeline_file(
      pipeline_config_path, config_override=config_override)
  kwargs.update({
      'train_steps': train_steps,
      'use_bfloat16': configs['train_config'].use_bfloat16 and use_tpu
  })
  configs = merge_external_params_with_configs(
494
      configs, None, kwargs_dict=kwargs)
pkulzc's avatar
pkulzc committed
495
496
497
498
499
500
501
502
503
504
505
506
507
508
  model_config = configs['model']
  train_config = configs['train_config']
  train_input_config = configs['train_input_config']

  unpad_groundtruth_tensors = train_config.unpad_groundtruth_tensors
  add_regularization_loss = train_config.add_regularization_loss
  clip_gradients_value = None
  if train_config.gradient_clipping_by_norm > 0:
    clip_gradients_value = train_config.gradient_clipping_by_norm

  # update train_steps from config but only when non-zero value is provided
  if train_steps is None and train_config.num_steps != 0:
    train_steps = train_config.num_steps

509
  if kwargs['use_bfloat16']:
510
    tf.compat.v2.keras.mixed_precision.set_global_policy('mixed_bfloat16')
511

512
513
514
515
  if train_config.load_all_detection_checkpoint_vars:
    raise ValueError('train_pb2.load_all_detection_checkpoint_vars '
                     'unsupported in TF2')

516
  config_util.update_fine_tune_checkpoint_type(train_config)
pkulzc's avatar
pkulzc committed
517
  fine_tune_checkpoint_type = train_config.fine_tune_checkpoint_type
518
  fine_tune_checkpoint_version = train_config.fine_tune_checkpoint_version
pkulzc's avatar
pkulzc committed
519
520
521

  # Write the as-run pipeline config to disk.
  if save_final_config:
522
523
    tf.logging.info('Saving pipeline config file to directory {}'.format(
        model_dir))
pkulzc's avatar
pkulzc committed
524
525
526
527
    pipeline_config_final = create_pipeline_proto_from_configs(configs)
    config_util.save_pipeline_config(pipeline_config_final, model_dir)

  # Build the model, optimizer, and training input
528
  strategy = tf.compat.v2.distribute.get_strategy()
pkulzc's avatar
pkulzc committed
529
  with strategy.scope():
530
    detection_model = MODEL_BUILD_UTIL_MAP['detection_model_fn_base'](
pkulzc's avatar
pkulzc committed
531
532
        model_config=model_config, is_training=True)

533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
    def train_dataset_fn(input_context):
      """Callable to create train input."""
      # Create the inputs.
      train_input = inputs.train_input(
          train_config=train_config,
          train_input_config=train_input_config,
          model_config=model_config,
          model=detection_model,
          input_context=input_context)
      train_input = train_input.repeat()
      return train_input

    train_input = strategy.experimental_distribute_datasets_from_function(
        train_dataset_fn)


    global_step = tf.Variable(
        0, trainable=False, dtype=tf.compat.v2.dtypes.int64, name='global_step',
        aggregation=tf.compat.v2.VariableAggregation.ONLY_FIRST_REPLICA)
pkulzc's avatar
pkulzc committed
552
553
    optimizer, (learning_rate,) = optimizer_builder.build(
        train_config.optimizer, global_step=global_step)
554
555
556
557
558

    # We run the detection_model on dummy inputs in order to ensure that the
    # model and all its variables have been properly constructed. Specifically,
    # this is currently necessary prior to (potentially) creating shadow copies
    # of the model variables for the EMA optimizer.
559
    if train_config.optimizer.use_moving_average:
560
561
      _ensure_model_is_built(detection_model, train_input,
                             unpad_groundtruth_tensors)
562
      optimizer.shadow_copy(detection_model)
pkulzc's avatar
pkulzc committed
563
564
565
566
567
568
569

    if callable(learning_rate):
      learning_rate_fn = learning_rate
    else:
      learning_rate_fn = lambda: learning_rate

  ## Train the model
570
571
  # Get the appropriate filepath (temporary or not) based on whether the worker
  # is the chief.
572
573
  summary_writer_filepath = get_filepath(strategy,
                                         os.path.join(model_dir, 'train'))
574
575
576
577
578
  if record_summaries:
    summary_writer = tf.compat.v2.summary.create_file_writer(
        summary_writer_filepath)
  else:
    summary_writer = tf2.summary.create_noop_writer()
579
580
581
582
583
584
585
586

  if use_tpu:
    num_steps_per_iteration = 100
  else:
    # TODO(b/135933080) Explore setting to 100 when GPU performance issues
    # are fixed.
    num_steps_per_iteration = 1

pkulzc's avatar
pkulzc committed
587
588
  with summary_writer.as_default():
    with strategy.scope():
589
590
591
      with tf.compat.v2.summary.record_if(
          lambda: global_step % num_steps_per_iteration == 0):
        # Load a fine-tuning checkpoint.
592
        if train_config.fine_tune_checkpoint:
593
594
595
596
597
          load_fine_tune_checkpoint(
              detection_model, train_config.fine_tune_checkpoint,
              fine_tune_checkpoint_type, fine_tune_checkpoint_version,
              train_config.run_fine_tune_checkpoint_dummy_computation,
              train_input, unpad_groundtruth_tensors)
598
599
600
601

        ckpt = tf.compat.v2.train.Checkpoint(
            step=global_step, model=detection_model, optimizer=optimizer)

602
        manager_dir = get_filepath(strategy, model_dir)
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
        if not strategy.extended.should_checkpoint:
          checkpoint_max_to_keep = 1
        manager = tf.compat.v2.train.CheckpointManager(
            ckpt, manager_dir, max_to_keep=checkpoint_max_to_keep)

        # We use the following instead of manager.latest_checkpoint because
        # manager_dir does not point to the model directory when we are running
        # in a worker.
        latest_checkpoint = tf.train.latest_checkpoint(model_dir)
        ckpt.restore(latest_checkpoint)

        def train_step_fn(features, labels):
          """Single train step."""
          loss = eager_train_step(
              detection_model,
              features,
              labels,
              unpad_groundtruth_tensors,
              optimizer,
              learning_rate=learning_rate_fn(),
              add_regularization_loss=add_regularization_loss,
              clip_gradients_value=clip_gradients_value,
              global_step=global_step,
              num_replicas=strategy.num_replicas_in_sync)
          global_step.assign_add(1)
          return loss

        def _sample_and_train(strategy, train_step_fn, data_iterator):
          features, labels = data_iterator.next()
632
633
634
635
636
637
          if hasattr(tf.distribute.Strategy, 'run'):
            per_replica_losses = strategy.run(
                train_step_fn, args=(features, labels))
          else:
            per_replica_losses = strategy.experimental_run_v2(
                train_step_fn, args=(features, labels))
638
639
640
641
642
643
644
645
646
647
648
          # TODO(anjalisridhar): explore if it is safe to remove the
          ## num_replicas scaling of the loss and switch this to a ReduceOp.Mean
          return strategy.reduce(tf.distribute.ReduceOp.SUM,
                                 per_replica_losses, axis=None)

        @tf.function
        def _dist_train_step(data_iterator):
          """A distributed train step."""

          if num_steps_per_iteration > 1:
            for _ in tf.range(num_steps_per_iteration - 1):
649
650
651
              # Following suggestion on yaqs/5402607292645376
              with tf.name_scope(''):
                _sample_and_train(strategy, train_step_fn, data_iterator)
652
653
654
655

          return _sample_and_train(strategy, train_step_fn, data_iterator)

        train_input_iter = iter(train_input)
656
657
658
659

        if int(global_step.value()) == 0:
          manager.save()

660
661
662
663
664
665
666
667
668
669
670
        checkpointed_step = int(global_step.value())
        logged_step = global_step.value()

        last_step_time = time.time()
        for _ in range(global_step.value(), train_steps,
                       num_steps_per_iteration):

          loss = _dist_train_step(train_input_iter)

          time_taken = time.time() - last_step_time
          last_step_time = time.time()
Pankaj Kanwar's avatar
Pankaj Kanwar committed
671
          steps_per_sec = num_steps_per_iteration * 1.0 / time_taken
672
673

          tf.compat.v2.summary.scalar(
Pankaj Kanwar's avatar
Pankaj Kanwar committed
674
675
676
              'steps_per_sec', steps_per_sec, step=global_step)

          steps_per_sec_list.append(steps_per_sec)
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692

          if global_step.value() - logged_step >= 100:
            tf.logging.info(
                'Step {} per-step time {:.3f}s loss={:.3f}'.format(
                    global_step.value(), time_taken / num_steps_per_iteration,
                    loss))
            logged_step = global_step.value()

          if ((int(global_step.value()) - checkpointed_step) >=
              checkpoint_every_n):
            manager.save()
            checkpointed_step = int(global_step.value())

  # Remove the checkpoint directories of the non-chief workers that
  # MultiWorkerMirroredStrategy forces us to save during sync distributed
  # training.
693
694
  clean_temporary_directories(strategy, manager_dir)
  clean_temporary_directories(strategy, summary_writer_filepath)
Pankaj Kanwar's avatar
Pankaj Kanwar committed
695
696
697
698
699
700
  # TODO(pkanwar): add accuracy metrics.
  if performance_summary_exporter is not None:
    metrics = {
        'steps_per_sec': np.mean(steps_per_sec_list),
        'steps_per_sec_p50': np.median(steps_per_sec_list),
        'steps_per_sec_max': max(steps_per_sec_list),
701
        'last_batch_loss': float(loss)
Pankaj Kanwar's avatar
Pankaj Kanwar committed
702
703
704
    }
    mixed_precision = 'bf16' if kwargs['use_bfloat16'] else 'fp32'
    performance_summary_exporter(metrics, mixed_precision)
pkulzc's avatar
pkulzc committed
705
706


707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
def prepare_eval_dict(detections, groundtruth, features):
  """Prepares eval dictionary containing detections and groundtruth.

  Takes in `detections` from the model, `groundtruth` and `features` returned
  from the eval tf.data.dataset and creates a dictionary of tensors suitable
  for detection eval modules.

  Args:
    detections: A dictionary of tensors returned by `model.postprocess`.
    groundtruth: `inputs.eval_input` returns an eval dataset of (features,
      labels) tuple. `groundtruth` must be set to `labels`.
      Please note that:
        * fields.InputDataFields.groundtruth_classes must be 0-indexed and
          in its 1-hot representation.
        * fields.InputDataFields.groundtruth_verified_neg_classes must be
          0-indexed and in its multi-hot repesentation.
        * fields.InputDataFields.groundtruth_not_exhaustive_classes must be
          0-indexed and in its multi-hot repesentation.
        * fields.InputDataFields.groundtruth_labeled_classes must be
          0-indexed and in its multi-hot repesentation.
    features: `inputs.eval_input` returns an eval dataset of (features, labels)
      tuple. This argument must be set to a dictionary containing the following
      keys and their corresponding values from `features` --
        * fields.InputDataFields.image
        * fields.InputDataFields.original_image
        * fields.InputDataFields.original_image_spatial_shape
        * fields.InputDataFields.true_image_shape
        * inputs.HASH_KEY

  Returns:
    eval_dict: A dictionary of tensors to pass to eval module.
    class_agnostic: Whether to evaluate detection in class agnostic mode.
  """

  groundtruth_boxes = groundtruth[fields.InputDataFields.groundtruth_boxes]
  groundtruth_boxes_shape = tf.shape(groundtruth_boxes)
  # For class-agnostic models, groundtruth one-hot encodings collapse to all
  # ones.
  class_agnostic = (
      fields.DetectionResultFields.detection_classes not in detections)
  if class_agnostic:
    groundtruth_classes_one_hot = tf.ones(
        [groundtruth_boxes_shape[0], groundtruth_boxes_shape[1], 1])
  else:
    groundtruth_classes_one_hot = groundtruth[
        fields.InputDataFields.groundtruth_classes]
  label_id_offset = 1  # Applying label id offset (b/63711816)
  groundtruth_classes = (
      tf.argmax(groundtruth_classes_one_hot, axis=2) + label_id_offset)
  groundtruth[fields.InputDataFields.groundtruth_classes] = groundtruth_classes

  label_id_offset_paddings = tf.constant([[0, 0], [1, 0]])
  if fields.InputDataFields.groundtruth_verified_neg_classes in groundtruth:
    groundtruth[
        fields.InputDataFields.groundtruth_verified_neg_classes] = tf.pad(
            groundtruth[
                fields.InputDataFields.groundtruth_verified_neg_classes],
            label_id_offset_paddings)
  if fields.InputDataFields.groundtruth_not_exhaustive_classes in groundtruth:
    groundtruth[
        fields.InputDataFields.groundtruth_not_exhaustive_classes] = tf.pad(
            groundtruth[
                fields.InputDataFields.groundtruth_not_exhaustive_classes],
            label_id_offset_paddings)
  if fields.InputDataFields.groundtruth_labeled_classes in groundtruth:
    groundtruth[fields.InputDataFields.groundtruth_labeled_classes] = tf.pad(
        groundtruth[fields.InputDataFields.groundtruth_labeled_classes],
        label_id_offset_paddings)

  use_original_images = fields.InputDataFields.original_image in features
  if use_original_images:
    eval_images = features[fields.InputDataFields.original_image]
    true_image_shapes = features[fields.InputDataFields.true_image_shape][:, :3]
    original_image_spatial_shapes = features[
        fields.InputDataFields.original_image_spatial_shape]
  else:
    eval_images = features[fields.InputDataFields.image]
    true_image_shapes = None
    original_image_spatial_shapes = None

  eval_dict = eval_util.result_dict_for_batched_example(
      eval_images,
      features[inputs.HASH_KEY],
      detections,
      groundtruth,
      class_agnostic=class_agnostic,
      scale_to_absolute=True,
      original_image_spatial_shapes=original_image_spatial_shapes,
      true_image_shapes=true_image_shapes)

  return eval_dict, class_agnostic


def concat_replica_results(tensor_dict):
  new_tensor_dict = {}
  for key, values in tensor_dict.items():
    new_tensor_dict[key] = tf.concat(values, axis=0)
  return new_tensor_dict


pkulzc's avatar
pkulzc committed
807
808
809
810
811
812
def eager_eval_loop(
    detection_model,
    configs,
    eval_dataset,
    use_tpu=False,
    postprocess_on_cpu=False,
Ronny Votel's avatar
Ronny Votel committed
813
814
    global_step=None,
    ):
pkulzc's avatar
pkulzc committed
815
816
817
818
  """Evaluate the model eagerly on the evaluation dataset.

  This method will compute the evaluation metrics specified in the configs on
  the entire evaluation dataset, then return the metrics. It will also log
819
  the metrics to TensorBoard.
pkulzc's avatar
pkulzc committed
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835

  Args:
    detection_model: A DetectionModel (based on Keras) to evaluate.
    configs: Object detection configs that specify the evaluators that should
      be used, as well as whether regularization loss should be included and
      if bfloat16 should be used on TPUs.
    eval_dataset: Dataset containing evaluation data.
    use_tpu: Whether a TPU is being used to execute the model for evaluation.
    postprocess_on_cpu: Whether model postprocessing should happen on
      the CPU when using a TPU to execute the model.
    global_step: A variable containing the training step this model was trained
      to. Used for logging purposes.

  Returns:
    A dict of evaluation metrics representing the results of this evaluation.
  """
836
  del postprocess_on_cpu
pkulzc's avatar
pkulzc committed
837
838
839
840
841
842
843
844
845
846
847
  train_config = configs['train_config']
  eval_input_config = configs['eval_input_config']
  eval_config = configs['eval_config']
  add_regularization_loss = train_config.add_regularization_loss

  is_training = False
  detection_model._is_training = is_training  # pylint: disable=protected-access
  tf.keras.backend.set_learning_phase(is_training)

  evaluator_options = eval_util.evaluator_options_from_eval_config(
      eval_config)
848
  batch_size = eval_config.batch_size
pkulzc's avatar
pkulzc committed
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876

  class_agnostic_category_index = (
      label_map_util.create_class_agnostic_category_index())
  class_agnostic_evaluators = eval_util.get_evaluators(
      eval_config,
      list(class_agnostic_category_index.values()),
      evaluator_options)

  class_aware_evaluators = None
  if eval_input_config.label_map_path:
    class_aware_category_index = (
        label_map_util.create_category_index_from_labelmap(
            eval_input_config.label_map_path))
    class_aware_evaluators = eval_util.get_evaluators(
        eval_config,
        list(class_aware_category_index.values()),
        evaluator_options)

  evaluators = None
  loss_metrics = {}

  @tf.function
  def compute_eval_dict(features, labels):
    """Compute the evaluation result on an image."""
    # For evaling on train data, it is necessary to check whether groundtruth
    # must be unpadded.
    boxes_shape = (
        labels[fields.InputDataFields.groundtruth_boxes].get_shape().as_list())
877
878
879
    unpad_groundtruth_tensors = (boxes_shape[1] is not None
                                 and not use_tpu
                                 and batch_size == 1)
880
    groundtruth_dict = labels
pkulzc's avatar
pkulzc committed
881
882
883
884
    labels = model_lib.unstack_batch(
        labels, unpad_groundtruth_tensors=unpad_groundtruth_tensors)

    losses_dict, prediction_dict = _compute_losses_and_predictions_dicts(
885
        detection_model, features, labels, add_regularization_loss)
886
887
888
889
890
891
892
893
894
895
896
897
898
899
    prediction_dict = detection_model.postprocess(
        prediction_dict, features[fields.InputDataFields.true_image_shape])
    eval_features = {
        fields.InputDataFields.image:
            features[fields.InputDataFields.image],
        fields.InputDataFields.original_image:
            features[fields.InputDataFields.original_image],
        fields.InputDataFields.original_image_spatial_shape:
            features[fields.InputDataFields.original_image_spatial_shape],
        fields.InputDataFields.true_image_shape:
            features[fields.InputDataFields.true_image_shape],
        inputs.HASH_KEY: features[inputs.HASH_KEY],
    }
    return losses_dict, prediction_dict, groundtruth_dict, eval_features
pkulzc's avatar
pkulzc committed
900

901
902
903
904
905
906
  agnostic_categories = label_map_util.create_class_agnostic_category_index()
  per_class_categories = label_map_util.create_category_index_from_labelmap(
      eval_input_config.label_map_path)
  keypoint_edges = [
      (kp.start, kp.end) for kp in eval_config.keypoint_edge]

907
  strategy = tf.compat.v2.distribute.get_strategy()
908

909
910
911
912
913
  for i, (features, labels) in enumerate(eval_dataset):
    try:
      (losses_dict, prediction_dict, groundtruth_dict,
       eval_features) = strategy.run(
           compute_eval_dict, args=(features, labels))
914
915
    except Exception as exc:  # pylint:disable=broad-except
      tf.logging.info('Encountered %s exception.', exc)
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
      tf.logging.info('A replica probably exhausted all examples. Skipping '
                      'pending examples on other replicas.')
      break
    (local_prediction_dict, local_groundtruth_dict,
     local_eval_features) = tf.nest.map_structure(
         strategy.experimental_local_results,
         [prediction_dict, groundtruth_dict, eval_features])
    local_prediction_dict = concat_replica_results(local_prediction_dict)
    local_groundtruth_dict = concat_replica_results(local_groundtruth_dict)
    local_eval_features = concat_replica_results(local_eval_features)

    eval_dict, class_agnostic = prepare_eval_dict(local_prediction_dict,
                                                  local_groundtruth_dict,
                                                  local_eval_features)
    for loss_key, loss_tensor in iter(losses_dict.items()):
      losses_dict[loss_key] = strategy.reduce(tf.distribute.ReduceOp.MEAN,
                                              loss_tensor, None)
933
934
935
936
937
    if class_agnostic:
      category_index = agnostic_categories
    else:
      category_index = per_class_categories

938
939
    if i % 100 == 0:
      tf.logging.info('Finished eval step %d', i)
pkulzc's avatar
pkulzc committed
940

941
    use_original_images = fields.InputDataFields.original_image in features
942
    if (use_original_images and i < eval_config.num_visualizations):
943
944
945
946
947
948
949
      sbys_image_list = vutils.draw_side_by_side_evaluation_image(
          eval_dict,
          category_index=category_index,
          max_boxes_to_draw=eval_config.max_num_boxes_to_visualize,
          min_score_thresh=eval_config.min_score_threshold,
          use_normalized_coordinates=False,
          keypoint_edges=keypoint_edges or None)
950
      for j, sbys_image in enumerate(sbys_image_list):
951
        tf.compat.v2.summary.image(
952
            name='eval_side_by_side_{}_{}'.format(i, j),
953
            step=global_step,
954
            data=sbys_image,
955
            max_outputs=eval_config.num_visualizations)
956
957
958
959
960
961
962
963
964
      if eval_util.has_densepose(eval_dict):
        dp_image_list = vutils.draw_densepose_visualizations(
            eval_dict)
        for j, dp_image in enumerate(dp_image_list):
          tf.compat.v2.summary.image(
              name='densepose_detections_{}_{}'.format(i, j),
              step=global_step,
              data=dp_image,
              max_outputs=eval_config.num_visualizations)
965

pkulzc's avatar
pkulzc committed
966
967
968
969
970
971
972
973
974
975
976
    if evaluators is None:
      if class_agnostic:
        evaluators = class_agnostic_evaluators
      else:
        evaluators = class_aware_evaluators

    for evaluator in evaluators:
      evaluator.add_eval_dict(eval_dict)

    for loss_key, loss_tensor in iter(losses_dict.items()):
      if loss_key not in loss_metrics:
977
978
        loss_metrics[loss_key] = []
      loss_metrics[loss_key].append(loss_tensor)
pkulzc's avatar
pkulzc committed
979
980
981
982
983
984

  eval_metrics = {}

  for evaluator in evaluators:
    eval_metrics.update(evaluator.evaluate())
  for loss_key in loss_metrics:
985
    eval_metrics[loss_key] = tf.reduce_mean(loss_metrics[loss_key])
pkulzc's avatar
pkulzc committed
986
987

  eval_metrics = {str(k): v for k, v in eval_metrics.items()}
Ronny Votel's avatar
Ronny Votel committed
988
  tf.logging.info('Eval metrics at step %d', global_step.numpy())
pkulzc's avatar
pkulzc committed
989
990
  for k in eval_metrics:
    tf.compat.v2.summary.scalar(k, eval_metrics[k], step=global_step)
991
    tf.logging.info('\t+ %s: %f', k, eval_metrics[k])
pkulzc's avatar
pkulzc committed
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
  return eval_metrics


def eval_continuously(
    pipeline_config_path,
    config_override=None,
    train_steps=None,
    sample_1_of_n_eval_examples=1,
    sample_1_of_n_eval_on_train_examples=1,
    use_tpu=False,
    override_eval_num_epochs=True,
    postprocess_on_cpu=False,
    model_dir=None,
    checkpoint_dir=None,
    wait_interval=180,
1007
    timeout=3600,
1008
    eval_index=0,
1009
    save_final_config=False,
pkulzc's avatar
pkulzc committed
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
    **kwargs):
  """Run continuous evaluation of a detection model eagerly.

  This method builds the model, and continously restores it from the most
  recent training checkpoint in the checkpoint directory & evaluates it
  on the evaluation data.

  Args:
    pipeline_config_path: A path to a pipeline config file.
    config_override: A pipeline_pb2.TrainEvalPipelineConfig text proto to
      override the config from `pipeline_config_path`.
    train_steps: Number of training steps. If None, the number of training steps
      is set from the `TrainConfig` proto.
    sample_1_of_n_eval_examples: Integer representing how often an eval example
      should be sampled. If 1, will sample all examples.
    sample_1_of_n_eval_on_train_examples: Similar to
      `sample_1_of_n_eval_examples`, except controls the sampling of training
      data for evaluation.
    use_tpu: Boolean, whether training and evaluation should run on TPU.
    override_eval_num_epochs: Whether to overwrite the number of epochs to 1 for
      eval_input.
    postprocess_on_cpu: When use_tpu and postprocess_on_cpu are true,
      postprocess is scheduled on the host cpu.
1033
1034
1035
1036
1037
1038
    model_dir: Directory to output resulting evaluation summaries to.
    checkpoint_dir: Directory that contains the training checkpoints.
    wait_interval: The mimmum number of seconds to wait before checking for a
      new checkpoint.
    timeout: The maximum number of seconds to wait for a checkpoint. Execution
      will terminate if no new checkpoints are found after these many seconds.
1039
1040
    eval_index: int, If given, only evaluate the dataset at the given
      index. By default, evaluates dataset at 0'th index.
1041
1042
    save_final_config: Whether to save the pipeline config file to the model
      directory.
pkulzc's avatar
pkulzc committed
1043
1044
1045
1046
    **kwargs: Additional keyword arguments for configuration override.
  """
  get_configs_from_pipeline_file = MODEL_BUILD_UTIL_MAP[
      'get_configs_from_pipeline_file']
Ronny Votel's avatar
Ronny Votel committed
1047
1048
  create_pipeline_proto_from_configs = MODEL_BUILD_UTIL_MAP[
      'create_pipeline_proto_from_configs']
pkulzc's avatar
pkulzc committed
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
  merge_external_params_with_configs = MODEL_BUILD_UTIL_MAP[
      'merge_external_params_with_configs']

  configs = get_configs_from_pipeline_file(
      pipeline_config_path, config_override=config_override)
  kwargs.update({
      'sample_1_of_n_eval_examples': sample_1_of_n_eval_examples,
      'use_bfloat16': configs['train_config'].use_bfloat16 and use_tpu
  })
  if train_steps is not None:
    kwargs['train_steps'] = train_steps
  if override_eval_num_epochs:
    kwargs.update({'eval_num_epochs': 1})
    tf.logging.warning(
        'Forced number of epochs for all eval validations to be 1.')
  configs = merge_external_params_with_configs(
1065
      configs, None, kwargs_dict=kwargs)
1066
1067
1068
  if model_dir and save_final_config:
    tf.logging.info('Saving pipeline config file to directory {}'.format(
        model_dir))
Ronny Votel's avatar
Ronny Votel committed
1069
1070
1071
    pipeline_config_final = create_pipeline_proto_from_configs(configs)
    config_util.save_pipeline_config(pipeline_config_final, model_dir)

pkulzc's avatar
pkulzc committed
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
  model_config = configs['model']
  train_input_config = configs['train_input_config']
  eval_config = configs['eval_config']
  eval_input_configs = configs['eval_input_configs']
  eval_on_train_input_config = copy.deepcopy(train_input_config)
  eval_on_train_input_config.sample_1_of_n_examples = (
      sample_1_of_n_eval_on_train_examples)
  if override_eval_num_epochs and eval_on_train_input_config.num_epochs != 1:
    tf.logging.warning('Expected number of evaluation epochs is 1, but '
                       'instead encountered `eval_on_train_input_config'
                       '.num_epochs` = '
                       '{}. Overwriting `num_epochs` to 1.'.format(
                           eval_on_train_input_config.num_epochs))
    eval_on_train_input_config.num_epochs = 1

1087
  if kwargs['use_bfloat16']:
1088
    tf.compat.v2.keras.mixed_precision.set_global_policy('mixed_bfloat16')
1089

1090
1091
1092
1093
1094
  eval_input_config = eval_input_configs[eval_index]
  strategy = tf.compat.v2.distribute.get_strategy()
  with strategy.scope():
    detection_model = MODEL_BUILD_UTIL_MAP['detection_model_fn_base'](
        model_config=model_config, is_training=True)
pkulzc's avatar
pkulzc committed
1095

1096
1097
1098
1099
1100
1101
  eval_input = strategy.experimental_distribute_dataset(
      inputs.eval_input(
          eval_config=eval_config,
          eval_input_config=eval_input_config,
          model_config=model_config,
          model=detection_model))
Vighnesh Birodkar's avatar
Vighnesh Birodkar committed
1102

pkulzc's avatar
pkulzc committed
1103
1104
1105
  global_step = tf.compat.v2.Variable(
      0, trainable=False, dtype=tf.compat.v2.dtypes.int64)

1106
1107
1108
  optimizer, _ = optimizer_builder.build(
      configs['train_config'].optimizer, global_step=global_step)

1109
1110
  for latest_checkpoint in tf.train.checkpoints_iterator(
      checkpoint_dir, timeout=timeout, min_interval_secs=wait_interval):
pkulzc's avatar
pkulzc committed
1111
    ckpt = tf.compat.v2.train.Checkpoint(
1112
1113
        step=global_step, model=detection_model, optimizer=optimizer)

1114
1115
1116
1117
    # We run the detection_model on dummy inputs in order to ensure that the
    # model and all its variables have been properly constructed. Specifically,
    # this is currently necessary prior to (potentially) creating shadow copies
    # of the model variables for the EMA optimizer.
1118
    if eval_config.use_moving_averages:
1119
1120
1121
      unpad_groundtruth_tensors = (eval_config.batch_size == 1 and not use_tpu)
      _ensure_model_is_built(detection_model, eval_input,
                             unpad_groundtruth_tensors)
1122
      optimizer.shadow_copy(detection_model)
1123
1124
1125

    ckpt.restore(latest_checkpoint).expect_partial()

1126
1127
1128
    if eval_config.use_moving_averages:
      optimizer.swap_weights()

1129
1130
1131
1132
1133
1134
1135
1136
1137
    summary_writer = tf.compat.v2.summary.create_file_writer(
        os.path.join(model_dir, 'eval', eval_input_config.name))
    with summary_writer.as_default():
      eager_eval_loop(
          detection_model,
          configs,
          eval_input,
          use_tpu=use_tpu,
          postprocess_on_cpu=postprocess_on_cpu,
Ronny Votel's avatar
Ronny Votel committed
1138
1139
          global_step=global_step,
          )