backbones.py 3.75 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Backbones configurations."""
import dataclasses
from typing import Optional, List

# Import libraries

from official.modeling import hyperparams


@dataclasses.dataclass
class ResNet(hyperparams.Config):
  """ResNet config."""
  model_id: int = 50
  depth_multiplier: float = 1.0
  stem_type: str = 'v0'
  se_ratio: float = 0.0
  stochastic_depth_drop_rate: float = 0.0
  scale_stem: bool = True
  resnetd_shortcut: bool = False
  replace_stem_max_pool: bool = False
  bn_trainable: bool = True


@dataclasses.dataclass
class DilatedResNet(hyperparams.Config):
  """DilatedResNet config."""
  model_id: int = 50
  output_stride: int = 16
  multigrid: Optional[List[int]] = None
  stem_type: str = 'v0'
  last_stage_repeats: int = 1
  se_ratio: float = 0.0
  stochastic_depth_drop_rate: float = 0.0


@dataclasses.dataclass
class EfficientNet(hyperparams.Config):
  """EfficientNet config."""
  model_id: str = 'b0'
  se_ratio: float = 0.0
  stochastic_depth_drop_rate: float = 0.0


@dataclasses.dataclass
class MobileNet(hyperparams.Config):
  """Mobilenet config."""
  model_id: str = 'MobileNetV2'
  filter_size_scale: float = 1.0
  stochastic_depth_drop_rate: float = 0.0
  output_stride: Optional[int] = None
  output_intermediate_endpoints: bool = False


@dataclasses.dataclass
class SpineNet(hyperparams.Config):
  """SpineNet config."""
  model_id: str = '49'
  stochastic_depth_drop_rate: float = 0.0
  min_level: int = 3
  max_level: int = 7


@dataclasses.dataclass
class SpineNetMobile(hyperparams.Config):
  """SpineNet config."""
  model_id: str = '49'
  stochastic_depth_drop_rate: float = 0.0
  se_ratio: float = 0.2
  expand_ratio: int = 6
  min_level: int = 3
  max_level: int = 7
  # If use_keras_upsampling_2d is True, model uses UpSampling2D keras layer
  # instead of optimized custom TF op. It makes model be more keras style. We
  # set this flag to True when we apply QAT from model optimization toolkit
  # that requires the model should use keras layers.
  use_keras_upsampling_2d: bool = False


@dataclasses.dataclass
class RevNet(hyperparams.Config):
  """RevNet config."""
  # Specifies the depth of RevNet.
  model_id: int = 56


@dataclasses.dataclass
class MobileDet(hyperparams.Config):
  """Mobiledet config."""
  model_id: str = 'MobileDetCPU'
  filter_size_scale: float = 1.0


@dataclasses.dataclass
class Backbone(hyperparams.OneOfConfig):
  """Configuration for backbones.

  Attributes:
    type: 'str', type of backbone be used, one of the fields below.
    resnet: resnet backbone config.
    dilated_resnet: dilated resnet backbone for semantic segmentation config.
    revnet: revnet backbone config.
    efficientnet: efficientnet backbone config.
    spinenet: spinenet backbone config.
    spinenet_mobile: mobile spinenet backbone config.
    mobilenet: mobilenet backbone config.
    mobiledet: mobiledet backbone config.
  """
  type: Optional[str] = None
  resnet: ResNet = ResNet()
  dilated_resnet: DilatedResNet = DilatedResNet()
  revnet: RevNet = RevNet()
  efficientnet: EfficientNet = EfficientNet()
  spinenet: SpineNet = SpineNet()
  spinenet_mobile: SpineNetMobile = SpineNetMobile()
  mobilenet: MobileNet = MobileNet()
  mobiledet: MobileDet = MobileDet()