image_classification.py 2.81 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Yeqing Li's avatar
Yeqing Li committed
14

15
"""Image classification input and model functions for serving/inference."""
Abdullah Rashwan's avatar
Abdullah Rashwan committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

import tensorflow as tf

from official.vision.beta.modeling import factory
from official.vision.beta.ops import preprocess_ops
from official.vision.beta.serving import export_base


MEAN_RGB = (0.485 * 255, 0.456 * 255, 0.406 * 255)
STDDEV_RGB = (0.229 * 255, 0.224 * 255, 0.225 * 255)


class ClassificationModule(export_base.ExportModule):
  """classification Module."""

Hongkun Yu's avatar
Hongkun Yu committed
31
  def _build_model(self):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
32
33
34
    input_specs = tf.keras.layers.InputSpec(
        shape=[self._batch_size] + self._input_image_size + [3])

Hongkun Yu's avatar
Hongkun Yu committed
35
    return factory.build_classification_model(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
36
        input_specs=input_specs,
Hongkun Yu's avatar
Hongkun Yu committed
37
38
        model_config=self.params.task.model,
        l2_regularizer=None)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

  def _build_inputs(self, image):
    """Builds classification model inputs for serving."""
    # Center crops and resizes image.
    image = preprocess_ops.center_crop_image(image)

    image = tf.image.resize(
        image, self._input_image_size, method=tf.image.ResizeMethod.BILINEAR)

    image = tf.reshape(
        image, [self._input_image_size[0], self._input_image_size[1], 3])

    # Normalizes image with mean and std pixel values.
    image = preprocess_ops.normalize_image(image,
                                           offset=MEAN_RGB,
                                           scale=STDDEV_RGB)
    return image

Hongkun Yu's avatar
Hongkun Yu committed
57
  def serve(self, images):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
58
59
60
61
62
63
64
    """Cast image to float and run inference.

    Args:
      images: uint8 Tensor of shape [batch_size, None, None, 3]
    Returns:
      Tensor holding classification output logits.
    """
Fan Yang's avatar
Fan Yang committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
    # Skip image preprocessing when input_type is tflite so it is compatible
    # with TFLite quantization.
    if self._input_type != 'tflite':
      with tf.device('cpu:0'):
        images = tf.cast(images, dtype=tf.float32)

        images = tf.nest.map_structure(
            tf.identity,
            tf.map_fn(
                self._build_inputs,
                elems=images,
                fn_output_signature=tf.TensorSpec(
                    shape=self._input_image_size + [3], dtype=tf.float32),
                parallel_iterations=32))
Abdullah Rashwan's avatar
Abdullah Rashwan committed
79

Hongkun Yu's avatar
Hongkun Yu committed
80
    logits = self.inference_step(images)
Fan Yang's avatar
Fan Yang committed
81
    probs = tf.nn.softmax(logits)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
82

Fan Yang's avatar
Fan Yang committed
83
    return {'logits': logits, 'probs': probs}