pretrain.py 6.59 KB
Newer Older
Rui Qian's avatar
Rui Qian committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Video ssl pretrain task definition."""
from absl import logging
import tensorflow as tf

# pylint: disable=unused-import
from official.core import input_reader
from official.core import task_factory
from official.projects.video_ssl.configs import video_ssl as exp_cfg
from official.projects.video_ssl.dataloaders import video_ssl_input
from official.projects.video_ssl.losses import losses
from official.projects.video_ssl.modeling import video_ssl_model
Yeqing Li's avatar
Yeqing Li committed
26
27
28
from official.vision.modeling import factory_3d
from official.vision.tasks import video_classification
# pylint: enable=unused-import
Rui Qian's avatar
Rui Qian committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186


@task_factory.register_task_cls(exp_cfg.VideoSSLPretrainTask)
class VideoSSLPretrainTask(video_classification.VideoClassificationTask):
  """A task for video ssl pretraining."""

  def build_model(self):
    """Builds video ssl pretraining model."""
    common_input_shape = [
        d1 if d1 == d2 else None
        for d1, d2 in zip(self.task_config.train_data.feature_shape,
                          self.task_config.validation_data.feature_shape)
    ]
    input_specs = tf.keras.layers.InputSpec(shape=[None] + common_input_shape)
    logging.info('Build model input %r', common_input_shape)

    model = factory_3d.build_model(
        self.task_config.model.model_type,
        input_specs=input_specs,
        model_config=self.task_config.model,
        num_classes=self.task_config.train_data.num_classes)
    return model

  def _get_decoder_fn(self, params):
    decoder = video_ssl_input.Decoder()
    return decoder.decode

  def build_inputs(self, params: exp_cfg.DataConfig, input_context=None):
    """Builds classification input."""

    parser = video_ssl_input.Parser(input_params=params)
    postprocess_fn = video_ssl_input.PostBatchProcessor(params)

    reader = input_reader.InputReader(
        params,
        dataset_fn=self._get_dataset_fn(params),
        decoder_fn=self._get_decoder_fn(params),
        parser_fn=parser.parse_fn(params.is_training),
        postprocess_fn=postprocess_fn)

    dataset = reader.read(input_context=input_context)

    return dataset

  def build_losses(self, model_outputs, num_replicas, model):
    """Sparse categorical cross entropy loss.

    Args:
      model_outputs: Output logits of the model.
      num_replicas: distributed replica number.
      model: keras model for calculating weight decay.

    Returns:
      The total loss tensor.
    """
    all_losses = {}
    contrastive_metrics = {}
    losses_config = self.task_config.losses
    total_loss = None
    contrastive_loss_dict = losses.contrastive_loss(
        model_outputs, num_replicas, losses_config.normalize_hidden,
        losses_config.temperature, model,
        self.task_config.losses.l2_weight_decay)
    total_loss = contrastive_loss_dict['total_loss']
    all_losses.update({
        'total_loss': total_loss
    })
    all_losses[self.loss] = total_loss
    contrastive_metrics.update({
        'contrast_acc': contrastive_loss_dict['contrast_acc'],
        'contrast_entropy': contrastive_loss_dict['contrast_entropy'],
        'reg_loss': contrastive_loss_dict['reg_loss']
    })
    return all_losses, contrastive_metrics

  def build_metrics(self, training=True):
    """Gets streaming metrics for training/validation."""
    metrics = [
        tf.keras.metrics.Mean(name='contrast_acc'),
        tf.keras.metrics.Mean(name='contrast_entropy'),
        tf.keras.metrics.Mean(name='reg_loss')
    ]
    return metrics

  def process_metrics(self, metrics, contrastive_metrics):
    """Process and update metrics."""
    contrastive_metric_values = contrastive_metrics.values()
    for metric, contrastive_metric_value in zip(metrics,
                                                contrastive_metric_values):
      metric.update_state(contrastive_metric_value)

  def train_step(self, inputs, model, optimizer, metrics=None):
    """Does forward and backward.

    Args:
      inputs: a dictionary of input tensors.
      model: the model, forward pass definition.
      optimizer: the optimizer for this training step.
      metrics: a nested structure of metrics objects.

    Returns:
      A dictionary of logs.
    """
    features, _ = inputs

    num_replicas = tf.distribute.get_strategy().num_replicas_in_sync
    with tf.GradientTape() as tape:
      if self.task_config.train_data.output_audio:
        outputs = model(features, training=True)
      else:
        outputs = model(features['image'], training=True)
      # Casting output layer as float32 is necessary when mixed_precision is
      # mixed_float16 or mixed_bfloat16 to ensure output is casted as float32.
      outputs = tf.nest.map_structure(
          lambda x: tf.cast(x, tf.float32), outputs)

      all_losses, contrastive_metrics = self.build_losses(
          model_outputs=outputs, num_replicas=num_replicas,
          model=model)
      loss = all_losses[self.loss]
      scaled_loss = loss

      # For mixed_precision policy, when LossScaleOptimizer is used, loss is
      # scaled for numerical stability.
      if isinstance(
          optimizer, tf.keras.mixed_precision.LossScaleOptimizer):
        scaled_loss = optimizer.get_scaled_loss(scaled_loss)

    tvars = model.trainable_variables
    grads = tape.gradient(scaled_loss, tvars)
    # Scales back gradient before apply_gradients when LossScaleOptimizer is
    # used.
    if isinstance(optimizer, tf.keras.mixed_precision.LossScaleOptimizer):
      grads = optimizer.get_unscaled_gradients(grads)
    optimizer.apply_gradients(list(zip(grads, tvars)))

    logs = all_losses
    if metrics:
      self.process_metrics(metrics, contrastive_metrics)
      logs.update({m.name: m.result() for m in metrics})
    return logs

  def validation_step(self, inputs, model, metrics=None):
    """Validatation step.

    Args:
      inputs: a dictionary of input tensors.
      model: the keras.Model.
      metrics: a nested structure of metrics objects.

    Returns:
      A dictionary of logs.
    """
    raise NotImplementedError

  def inference_step(self, features, model):
    """Performs the forward step."""
    raise NotImplementedError