losses.py 5.05 KB
Newer Older
Rui Qian's avatar
Rui Qian committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Define losses."""

# Import libraries
import tensorflow as tf
from tensorflow.compiler.tf2xla.python import xla


def contrastive_loss(hidden,
                     num_replicas,
                     normalize_hidden,
                     temperature,
                     model,
                     weight_decay):
  """Computes contrastive loss.

  Args:
    hidden: embedding of video clips after projection head.
    num_replicas: number of distributed replicas.
    normalize_hidden: whether or not to l2 normalize the hidden vector.
    temperature: temperature in the InfoNCE contrastive loss.
    model: keras model for calculating weight decay.
    weight_decay: weight decay parameter.

  Returns:
    A loss scalar.
    The logits for contrastive prediction task.
    The labels for contrastive prediction task.
  """
  large_num = 1e9

  hidden1, hidden2 = tf.split(hidden, num_or_size_splits=2, axis=0)
  if normalize_hidden:
    hidden1 = tf.math.l2_normalize(hidden1, -1)
    hidden2 = tf.math.l2_normalize(hidden2, -1)
  batch_size = tf.shape(hidden1)[0]

  if num_replicas == 1:
    # This is the local version
    hidden1_large = hidden1
    hidden2_large = hidden2
    labels = tf.one_hot(tf.range(batch_size), batch_size * 2)
    masks = tf.one_hot(tf.range(batch_size), batch_size)

  else:
    # This is the cross-tpu version.
    hidden1_large = tpu_cross_replica_concat(hidden1, num_replicas)
    hidden2_large = tpu_cross_replica_concat(hidden2, num_replicas)
    enlarged_batch_size = tf.shape(hidden1_large)[0]
    replica_id = tf.cast(tf.cast(xla.replica_id(), tf.uint32), tf.int32)
    labels_idx = tf.range(batch_size) + replica_id * batch_size
    labels = tf.one_hot(labels_idx, enlarged_batch_size * 2)
    masks = tf.one_hot(labels_idx, enlarged_batch_size)

  logits_aa = tf.matmul(hidden1, hidden1_large, transpose_b=True) / temperature
  logits_aa = logits_aa - tf.cast(masks, logits_aa.dtype) * large_num
  logits_bb = tf.matmul(hidden2, hidden2_large, transpose_b=True) / temperature
  logits_bb = logits_bb - tf.cast(masks, logits_bb.dtype) * large_num
  logits_ab = tf.matmul(hidden1, hidden2_large, transpose_b=True) / temperature
  logits_ba = tf.matmul(hidden2, hidden1_large, transpose_b=True) / temperature

  loss_a = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
      labels, tf.concat([logits_ab, logits_aa], 1)))
  loss_b = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
      labels, tf.concat([logits_ba, logits_bb], 1)))
  loss = loss_a + loss_b

  l2_loss = weight_decay * tf.add_n([
      tf.nn.l2_loss(v)
      for v in model.trainable_variables
      if 'kernel' in v.name
    ])

  total_loss = loss +  tf.cast(l2_loss, loss.dtype)

  contrast_prob = tf.nn.softmax(logits_ab)
  contrast_entropy = - tf.reduce_mean(
      tf.reduce_sum(contrast_prob * tf.math.log(contrast_prob + 1e-8), -1))

  contrast_acc = tf.equal(tf.argmax(labels, 1), tf.argmax(logits_ab, axis=1))
  contrast_acc = tf.reduce_mean(tf.cast(contrast_acc, tf.float32))

  return {
      'total_loss': total_loss,
      'contrastive_loss': loss,
      'reg_loss': l2_loss,
      'contrast_acc': contrast_acc,
      'contrast_entropy': contrast_entropy,
  }


def tpu_cross_replica_concat(tensor, num_replicas):
  """Reduce a concatenation of the `tensor` across TPU cores.

  Args:
    tensor: tensor to concatenate.
    num_replicas: number of TPU device replicas.

  Returns:
    Tensor of the same rank as `tensor` with first dimension `num_replicas`
    times larger.
  """
  with tf.name_scope('tpu_cross_replica_concat'):
    # This creates a tensor that is like the input tensor but has an added
    # replica dimension as the outermost dimension. On each replica it will
    # contain the local values and zeros for all other values that need to be
    # fetched from other replicas.
    ext_tensor = tf.scatter_nd(
        indices=[[xla.replica_id()]],
        updates=[tensor],
        shape=[num_replicas] + tensor.shape.as_list())

    # As every value is only present on one replica and 0 in all others, adding
    # them all together will result in the full tensor on all replicas.
    replica_context = tf.distribute.get_replica_context()
    ext_tensor = replica_context.all_reduce(tf.distribute.ReduceOp.SUM,
                                            ext_tensor)

    # Flatten the replica dimension.
    # The first dimension size will be: tensor.shape[0] * num_replicas
    # Using [-1] trick to support also scalar input.
    return tf.reshape(ext_tensor, [-1] + ext_tensor.shape.as_list()[2:])