teams_experiments.py 4.32 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
Jialu Liu's avatar
Jialu Liu committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# pylint: disable=g-doc-return-or-yield,line-too-long
"""TEAMS experiments."""
import dataclasses
Hongkun Yu's avatar
Hongkun Yu committed
18

Jialu Liu's avatar
Jialu Liu committed
19
20
21
from official.core import config_definitions as cfg
from official.core import exp_factory
from official.modeling import optimization
Hongkun Yu's avatar
Hongkun Yu committed
22
from official.nlp.configs import encoders
Jialu Liu's avatar
Jialu Liu committed
23
from official.nlp.data import pretrain_dataloader
Hongkun Yu's avatar
Hongkun Yu committed
24
25
26
27
from official.nlp.data import question_answering_dataloader
from official.nlp.data import sentence_prediction_dataloader
from official.nlp.tasks import question_answering
from official.nlp.tasks import sentence_prediction
28
29
from official.projects.teams import teams
from official.projects.teams import teams_task
Jialu Liu's avatar
Jialu Liu committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

AdamWeightDecay = optimization.AdamWeightDecayConfig
PolynomialLr = optimization.PolynomialLrConfig
PolynomialWarmupConfig = optimization.PolynomialWarmupConfig


@dataclasses.dataclass
class TeamsOptimizationConfig(optimization.OptimizationConfig):
  """TEAMS optimization config."""
  optimizer: optimization.OptimizerConfig = optimization.OptimizerConfig(
      type="adamw",
      adamw=AdamWeightDecay(
          weight_decay_rate=0.01,
          exclude_from_weight_decay=["LayerNorm", "layer_norm", "bias"],
          epsilon=1e-6))
  learning_rate: optimization.LrConfig = optimization.LrConfig(
      type="polynomial",
      polynomial=PolynomialLr(
          initial_learning_rate=1e-4,
          decay_steps=1000000,
          end_learning_rate=0.0))
  warmup: optimization.WarmupConfig = optimization.WarmupConfig(
      type="polynomial", polynomial=PolynomialWarmupConfig(warmup_steps=10000))


@exp_factory.register_config_factory("teams/pretraining")
def teams_pretrain() -> cfg.ExperimentConfig:
  """TEAMS pretraining."""
  config = cfg.ExperimentConfig(
      task=teams_task.TeamsPretrainTaskConfig(
          train_data=pretrain_dataloader.BertPretrainDataConfig(),
          validation_data=pretrain_dataloader.BertPretrainDataConfig(
              is_training=False)),
      trainer=cfg.TrainerConfig(
          optimizer_config=TeamsOptimizationConfig(), train_steps=1000000),
      restrictions=[
          "task.train_data.is_training != None",
          "task.validation_data.is_training != None"
      ])
  return config
Hongkun Yu's avatar
Hongkun Yu committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108


@exp_factory.register_config_factory("teams/sentence_prediction")
def teams_sentence_prediction() -> cfg.ExperimentConfig:
  r"""Teams GLUE."""
  config = cfg.ExperimentConfig(
      task=sentence_prediction.SentencePredictionConfig(
          model=sentence_prediction.ModelConfig(
              encoder=encoders.EncoderConfig(
                  type="any", any=teams.TeamsEncoderConfig(num_layers=1))),
          train_data=sentence_prediction_dataloader
          .SentencePredictionDataConfig(),
          validation_data=sentence_prediction_dataloader
          .SentencePredictionDataConfig(
              is_training=False, drop_remainder=False)),
      trainer=cfg.TrainerConfig(optimizer_config=TeamsOptimizationConfig()),
      restrictions=[
          "task.train_data.is_training != None",
          "task.validation_data.is_training != None"
      ])
  return config


@exp_factory.register_config_factory("teams/squad")
def teams_squad() -> cfg.ExperimentConfig:
  """Teams Squad V1/V2."""
  config = cfg.ExperimentConfig(
      task=question_answering.QuestionAnsweringConfig(
          model=question_answering.ModelConfig(
              encoder=encoders.EncoderConfig(
                  type="any", any=teams.TeamsEncoderConfig(num_layers=1))),
          train_data=question_answering_dataloader.QADataConfig(),
          validation_data=question_answering_dataloader.QADataConfig()),
      trainer=cfg.TrainerConfig(optimizer_config=TeamsOptimizationConfig()),
      restrictions=[
          "task.train_data.is_training != None",
          "task.validation_data.is_training != None"
      ])
  return config