s3d.py 14.1 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Contains the Tensorflow 2 version definition of S3D model.

S3D model is described in the following paper:
https://arxiv.org/abs/1712.04851.
"""
from typing import Any, Dict, Mapping, Optional, Sequence, Text, Tuple, Union

import tensorflow as tf

from official.modeling import hyperparams
from official.projects.s3d.configs import s3d as cfg
from official.projects.s3d.modeling import inception_utils
from official.projects.s3d.modeling import net_utils
Yeqing Li's avatar
Yeqing Li committed
28
29
from official.vision.modeling import factory_3d as model_factory
from official.vision.modeling.backbones import factory as backbone_factory
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355

initializers = tf.keras.initializers
regularizers = tf.keras.regularizers


class S3D(tf.keras.Model):
  """Class to build S3D family model."""

  def __init__(self,
               input_specs: tf.keras.layers.InputSpec,
               final_endpoint: Text = 'Mixed_5c',
               first_temporal_kernel_size: int = 3,
               temporal_conv_start_at: Text = 'Conv2d_2c_3x3',
               gating_start_at: Text = 'Conv2d_2c_3x3',
               swap_pool_and_1x1x1: bool = True,
               gating_style: Text = 'CELL',
               use_sync_bn: bool = False,
               norm_momentum: float = 0.999,
               norm_epsilon: float = 0.001,
               temporal_conv_initializer: Union[
                   Text,
                   initializers.Initializer] = initializers.TruncatedNormal(
                       mean=0.0, stddev=0.01),
               temporal_conv_type: Text = '2+1d',
               kernel_initializer: Union[
                   Text,
                   initializers.Initializer] = initializers.TruncatedNormal(
                       mean=0.0, stddev=0.01),
               kernel_regularizer: Union[Text, regularizers.Regularizer] = 'l2',
               depth_multiplier: float = 1.0,
               **kwargs):
    """Constructor.

    Args:
      input_specs: `tf.keras.layers.InputSpec` specs of the input tensor.
      final_endpoint: Specifies the endpoint to construct the network up to.
      first_temporal_kernel_size: Temporal kernel size of the first convolution
        layer.
      temporal_conv_start_at: Specifies the endpoint where to start performimg
        temporal convolution from.
      gating_start_at: Specifies the endpoint where to start performimg self
        gating from.
      swap_pool_and_1x1x1: A boolean flag indicates that whether to swap the
        order of convolution and max pooling in Branch_3 of inception v1 cell.
      gating_style: A string that specifies self gating to be applied after each
        branch and/or after each cell. It can be one of ['BRANCH', 'CELL',
        'BRANCH_AND_CELL'].
      use_sync_bn: If True, use synchronized batch normalization.
      norm_momentum: A `float` of normalization momentum for the moving average.
      norm_epsilon: A `float` added to variance to avoid dividing by zero.
      temporal_conv_initializer: Weight initializer for temporal convolutional
        layers.
      temporal_conv_type: The type of parameterized convolution. Currently, we
        support '2d', '3d', '2+1d', '1+2d'.
      kernel_initializer: Weight initializer for convolutional layers other than
        temporal convolution.
      kernel_regularizer: Weight regularizer for all convolutional layers.
      depth_multiplier: A float to reduce/increase number of channels.
      **kwargs: keyword arguments to be passed.
    """

    self._input_specs = input_specs
    self._final_endpoint = final_endpoint
    self._first_temporal_kernel_size = first_temporal_kernel_size
    self._temporal_conv_start_at = temporal_conv_start_at
    self._gating_start_at = gating_start_at
    self._swap_pool_and_1x1x1 = swap_pool_and_1x1x1
    self._gating_style = gating_style
    self._use_sync_bn = use_sync_bn
    self._norm_momentum = norm_momentum
    self._norm_epsilon = norm_epsilon
    self._temporal_conv_initializer = temporal_conv_initializer
    self._temporal_conv_type = temporal_conv_type
    self._kernel_initializer = kernel_initializer
    self._kernel_regularizer = kernel_regularizer
    self._depth_multiplier = depth_multiplier

    self._temporal_conv_endpoints = net_utils.make_set_from_start_endpoint(
        temporal_conv_start_at, inception_utils.INCEPTION_V1_CONV_ENDPOINTS)
    self._self_gating_endpoints = net_utils.make_set_from_start_endpoint(
        gating_start_at, inception_utils.INCEPTION_V1_CONV_ENDPOINTS)

    inputs = tf.keras.Input(shape=input_specs.shape[1:])
    net, end_points = inception_utils.inception_v1_stem_cells(
        inputs,
        depth_multiplier,
        final_endpoint,
        temporal_conv_endpoints=self._temporal_conv_endpoints,
        self_gating_endpoints=self._self_gating_endpoints,
        temporal_conv_type=self._temporal_conv_type,
        first_temporal_kernel_size=self._first_temporal_kernel_size,
        use_sync_bn=self._use_sync_bn,
        norm_momentum=self._norm_momentum,
        norm_epsilon=self._norm_epsilon,
        temporal_conv_initializer=self._temporal_conv_initializer,
        kernel_initializer=self._kernel_initializer,
        kernel_regularizer=self._kernel_regularizer,
        parameterized_conv_layer=self._get_parameterized_conv_layer_impl(),
        layer_naming_fn=self._get_layer_naming_fn(),
    )

    for end_point, filters in inception_utils.INCEPTION_V1_ARCH_SKELETON:
      net, end_points = self._s3d_cell(net, end_point, end_points, filters)
      if end_point == final_endpoint:
        break

    if final_endpoint not in end_points:
      raise ValueError(
          'Unrecognized final endpoint %s (available endpoints: %s).' %
          (final_endpoint, end_points.keys()))

    super(S3D, self).__init__(inputs=inputs, outputs=end_points, **kwargs)

  def _s3d_cell(
      self,
      net: tf.Tensor,
      end_point: Text,
      end_points: Dict[Text, tf.Tensor],
      filters: Union[int, Sequence[Any]],
      non_local_block: Optional[tf.keras.layers.Layer] = None,
      attention_cell: Optional[tf.keras.layers.Layer] = None,
      attention_cell_super_graph: Optional[tf.keras.layers.Layer] = None
  ) -> Tuple[tf.Tensor, Dict[Text, tf.Tensor]]:
    if end_point.startswith('Mixed'):
      conv_type = (
          self._temporal_conv_type
          if end_point in self._temporal_conv_endpoints else '2d')
      use_self_gating_on_branch = (
          end_point in self._self_gating_endpoints and
          (self._gating_style == 'BRANCH' or
           self._gating_style == 'BRANCH_AND_CELL'))
      use_self_gating_on_cell = (
          end_point in self._self_gating_endpoints and
          (self._gating_style == 'CELL' or
           self._gating_style == 'BRANCH_AND_CELL'))
      net = self._get_inception_v1_cell_layer_impl()(
          branch_filters=net_utils.apply_depth_multiplier(
              filters, self._depth_multiplier),
          conv_type=conv_type,
          temporal_dilation_rate=1,
          swap_pool_and_1x1x1=self._swap_pool_and_1x1x1,
          use_self_gating_on_branch=use_self_gating_on_branch,
          use_self_gating_on_cell=use_self_gating_on_cell,
          use_sync_bn=self._use_sync_bn,
          norm_momentum=self._norm_momentum,
          norm_epsilon=self._norm_epsilon,
          kernel_initializer=self._kernel_initializer,
          temporal_conv_initializer=self._temporal_conv_initializer,
          kernel_regularizer=self._kernel_regularizer,
          name=self._get_layer_naming_fn()(end_point))(
              net)
    else:
      net = tf.keras.layers.MaxPool3D(
          pool_size=filters[0],
          strides=filters[1],
          padding='same',
          name=self._get_layer_naming_fn()(end_point))(
              net)
    end_points[end_point] = net
    if non_local_block:
      # TODO(b/182299420): Implement non local block in TF2.
      raise NotImplementedError('Non local block is not implemented yet.')
    if attention_cell:
      # TODO(b/182299420): Implement attention cell in TF2.
      raise NotImplementedError('Attention cell is not implemented yet.')
    if attention_cell_super_graph:
      # TODO(b/182299420): Implement attention cell super graph in TF2.
      raise NotImplementedError('Attention cell super graph is not implemented'
                                ' yet.')
    return net, end_points

  def get_config(self):
    config_dict = {
        'input_specs': self._input_specs,
        'final_endpoint': self._final_endpoint,
        'first_temporal_kernel_size': self._first_temporal_kernel_size,
        'temporal_conv_start_at': self._temporal_conv_start_at,
        'gating_start_at': self._gating_start_at,
        'swap_pool_and_1x1x1': self._swap_pool_and_1x1x1,
        'gating_style': self._gating_style,
        'use_sync_bn': self._use_sync_bn,
        'norm_momentum': self._norm_momentum,
        'norm_epsilon': self._norm_epsilon,
        'temporal_conv_initializer': self._temporal_conv_initializer,
        'temporal_conv_type': self._temporal_conv_type,
        'kernel_initializer': self._kernel_initializer,
        'kernel_regularizer': self._kernel_regularizer,
        'depth_multiplier': self._depth_multiplier
    }
    return config_dict

  @classmethod
  def from_config(cls, config, custom_objects=None):
    return cls(**config)

  @property
  def output_specs(self):
    """A dict of {level: TensorShape} pairs for the model output."""
    return self._output_specs

  def _get_inception_v1_cell_layer_impl(self):
    return inception_utils.InceptionV1CellLayer

  def _get_parameterized_conv_layer_impl(self):
    return net_utils.ParameterizedConvLayer

  def _get_layer_naming_fn(self):
    return lambda end_point: None


class S3DModel(tf.keras.Model):
  """An S3D model builder."""

  def __init__(self,
               backbone: tf.keras.Model,
               num_classes: int,
               input_specs: Mapping[Text, tf.keras.layers.InputSpec],
               final_endpoint: Text = 'Mixed_5c',
               dropout_rate: float = 0.0,
               **kwargs):
    """Constructor.

    Args:
      backbone: S3D backbone Keras Model.
      num_classes: `int` number of possible classes for video classification.
      input_specs: input_specs: `tf.keras.layers.InputSpec` specs of the input
        tensor.
      final_endpoint: Specifies the endpoint to construct the network up to.
      dropout_rate: `float` between 0 and 1. Fraction of the input units to
        drop. Note that dropout_rate = 1.0 - dropout_keep_prob.
      **kwargs: keyword arguments to be passed.
    """
    self._self_setattr_tracking = False
    self._backbone = backbone
    self._num_classes = num_classes
    self._input_specs = input_specs
    self._final_endpoint = final_endpoint
    self._dropout_rate = dropout_rate
    self._config_dict = {
        'backbone': backbone,
        'num_classes': num_classes,
        'input_specs': input_specs,
        'final_endpoint': final_endpoint,
        'dropout_rate': dropout_rate,
    }

    inputs = {
        k: tf.keras.Input(shape=v.shape[1:]) for k, v in input_specs.items()
    }
    streams = self._backbone(inputs['image'])

    pool = tf.math.reduce_mean(streams[self._final_endpoint], axis=[1, 2, 3])
    fc = tf.keras.layers.Dropout(dropout_rate)(pool)
    logits = tf.keras.layers.Dense(**self._build_dense_layer_params())(fc)

    super(S3DModel, self).__init__(inputs=inputs, outputs=logits, **kwargs)

  @property
  def checkpoint_items(self):
    """Returns a dictionary of items to be additionally checkpointed."""
    return dict(backbone=self.backbone)

  @property
  def backbone(self):
    return self._backbone

  def get_config(self):
    return self._config_dict

  @classmethod
  def from_config(cls, config, custom_objects=None):
    return cls(**config)

  def _build_dense_layer_params(self):
    return dict(units=self._num_classes, kernel_regularizer='l2')


@backbone_factory.register_backbone_builder('s3d')
def build_s3d(
    input_specs: tf.keras.layers.InputSpec,
    backbone_config: hyperparams.Config,
    norm_activation_config: hyperparams.Config,
    l2_regularizer: tf.keras.regularizers.Regularizer = None
) -> tf.keras.Model:  # pytype: disable=annotation-type-mismatch  # typed-keras
  """Builds S3D backbone."""

  backbone_type = backbone_config.type
  backbone_cfg = backbone_config.get()
  assert backbone_type == 's3d'
  del norm_activation_config

  backbone = S3D(
      input_specs=input_specs,
      final_endpoint=backbone_cfg.final_endpoint,
      first_temporal_kernel_size=backbone_cfg.first_temporal_kernel_size,
      temporal_conv_start_at=backbone_cfg.temporal_conv_start_at,
      gating_start_at=backbone_cfg.gating_start_at,
      swap_pool_and_1x1x1=backbone_cfg.swap_pool_and_1x1x1,
      gating_style=backbone_cfg.gating_style,
      use_sync_bn=backbone_cfg.use_sync_bn,
      norm_momentum=backbone_cfg.norm_momentum,
      norm_epsilon=backbone_cfg.norm_epsilon,
      temporal_conv_type=backbone_cfg.temporal_conv_type,
      kernel_regularizer=l2_regularizer,
      depth_multiplier=backbone_cfg.depth_multiplier)
  return backbone


@model_factory.register_model_builder('s3d')
def build_s3d_model(
    input_specs: tf.keras.layers.InputSpec,
    model_config: cfg.S3DModel,
    num_classes: int,
    l2_regularizer: tf.keras.regularizers.Regularizer = None
) -> tf.keras.Model:  # pytype: disable=annotation-type-mismatch  # typed-keras
  """Builds S3D model with classification layer."""
  input_specs_dict = {'image': input_specs}
  backbone = build_s3d(input_specs, model_config.backbone,
                       model_config.norm_activation, l2_regularizer)

  model = S3DModel(
      backbone,
      num_classes=num_classes,
      input_specs=input_specs_dict,
      dropout_rate=model_config.dropout_rate)
  return model