net_utils.py 7.68 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Commonly used TensorFlow 2 network blocks."""
from typing import Any, Text, Sequence, Union

import tensorflow as tf

WEIGHT_INITIALIZER = {
    'Xavier': tf.keras.initializers.GlorotUniform,
    'Gaussian': lambda: tf.keras.initializers.RandomNormal(stddev=0.01),
}

initializers = tf.keras.initializers
regularizers = tf.keras.regularizers


def make_set_from_start_endpoint(start_endpoint: Text,
                                 endpoints: Sequence[Text]):
  """Makes a subset of endpoints from the given starting position."""
  if start_endpoint not in endpoints:
    return set()
  start_index = endpoints.index(start_endpoint)
  return set(endpoints[start_index:])


def apply_depth_multiplier(d: Union[int, Sequence[Any]],
                           depth_multiplier: float):
  """Applies depth_multiplier recursively to ints."""
  if isinstance(d, int):
    return int(d * depth_multiplier)
  else:
    return [apply_depth_multiplier(x, depth_multiplier) for x in d]


class ParameterizedConvLayer(tf.keras.layers.Layer):
  """Convolution layer based on the input conv_type."""

  def __init__(
      self,
      conv_type: Text,
      kernel_size: int,
      filters: int,
      strides: Sequence[int],
      rates: Sequence[int],
      use_sync_bn: bool = False,
      norm_momentum: float = 0.999,
      norm_epsilon: float = 0.001,
      temporal_conv_initializer: Union[
          Text, initializers.Initializer] = 'glorot_uniform',
      kernel_initializer: Union[Text,
                                initializers.Initializer] = 'truncated_normal',
      kernel_regularizer: Union[Text, regularizers.Regularizer] = 'l2',
      **kwargs):
    super(ParameterizedConvLayer, self).__init__(**kwargs)
    self._conv_type = conv_type
    self._kernel_size = kernel_size
    self._filters = filters
    self._strides = strides
    self._rates = rates
    self._use_sync_bn = use_sync_bn
    self._norm_momentum = norm_momentum
    self._norm_epsilon = norm_epsilon
    if use_sync_bn:
      self._norm = tf.keras.layers.experimental.SyncBatchNormalization
    else:
      self._norm = tf.keras.layers.BatchNormalization
    if tf.keras.backend.image_data_format() == 'channels_last':
      self._channel_axis = -1
    else:
      self._channel_axis = 1
    self._temporal_conv_initializer = temporal_conv_initializer
    self._kernel_initializer = kernel_initializer
    self._kernel_regularizer = kernel_regularizer

  def _build_conv_layer_params(self, input_shape):
    """Builds params for conv layers."""
    conv_layer_params = []
    if self._conv_type == '3d':
      conv_layer_params.append(
          dict(
              filters=self._filters,
              kernel_size=[self._kernel_size] * 3,
              strides=self._strides,
              dilation_rate=self._rates,
              kernel_initializer=self._kernel_initializer,
          ))
    elif self._conv_type == '2d':
      conv_layer_params.append(
          dict(
              filters=self._filters,
              kernel_size=[1, self._kernel_size, self._kernel_size],
              strides=[1, self._strides[1], self._strides[2]],
              dilation_rate=[1, self._rates[1], self._rates[2]],
              kernel_initializer=self._kernel_initializer,
          ))
    elif self._conv_type == '1+2d':
      channels_in = input_shape[self._channel_axis]
      conv_layer_params.append(
          dict(
              filters=channels_in,
              kernel_size=[self._kernel_size, 1, 1],
              strides=[self._strides[0], 1, 1],
              dilation_rate=[self._rates[0], 1, 1],
              kernel_initializer=self._temporal_conv_initializer,
          ))
      conv_layer_params.append(
          dict(
              filters=self._filters,
              kernel_size=[1, self._kernel_size, self._kernel_size],
              strides=[1, self._strides[1], self._strides[2]],
              dilation_rate=[1, self._rates[1], self._rates[2]],
              kernel_initializer=self._kernel_initializer,
          ))
    elif self._conv_type == '2+1d':
      conv_layer_params.append(
          dict(
              filters=self._filters,
              kernel_size=[1, self._kernel_size, self._kernel_size],
              strides=[1, self._strides[1], self._strides[2]],
              dilation_rate=[1, self._rates[1], self._rates[2]],
              kernel_initializer=self._kernel_initializer,
          ))
      conv_layer_params.append(
          dict(
              filters=self._filters,
              kernel_size=[self._kernel_size, 1, 1],
              strides=[self._strides[0], 1, 1],
              dilation_rate=[self._rates[0], 1, 1],
              kernel_initializer=self._temporal_conv_initializer,
          ))
    elif self._conv_type == '1+1+1d':
      conv_layer_params.append(
          dict(
              filters=self._filters,
              kernel_size=[1, 1, self._kernel_size],
              strides=[1, 1, self._strides[2]],
              dilation_rate=[1, 1, self._rates[2]],
              kernel_initializer=self._kernel_initializer,
          ))
      conv_layer_params.append(
          dict(
              filters=self._filters,
              kernel_size=[1, self._kernel_size, 1],
              strides=[1, self._strides[1], 1],
              dilation_rate=[1, self._rates[1], 1],
              kernel_initializer=self._kernel_initializer,
          ))
      conv_layer_params.append(
          dict(
              filters=self._filters,
              kernel_size=[self._kernel_size, 1, 1],
              strides=[self._strides[0], 1, 1],
              dilation_rate=[self._rates[0], 1, 1],
              kernel_initializer=self._kernel_initializer,
          ))
    else:
      raise ValueError('Unsupported conv_type: {}'.format(self._conv_type))
    return conv_layer_params

  def _build_norm_layer_params(self, conv_param):
    """Builds params for the norm layer after one conv layer."""
    return dict(
        axis=self._channel_axis,
        momentum=self._norm_momentum,
        epsilon=self._norm_epsilon,
        scale=False,
        gamma_initializer='ones')

  def _build_activation_layer_params(self, conv_param):
    """Builds params for the activation layer after one conv layer."""
    return {}

  def _append_conv_layer(self, param):
    """Appends conv, normalization and activation layers."""
    self._parameterized_conv_layers.append(
        tf.keras.layers.Conv3D(
            padding='same',
            use_bias=False,
            kernel_regularizer=self._kernel_regularizer,
            **param,
        ))
    norm_layer_params = self._build_norm_layer_params(param)
    self._parameterized_conv_layers.append(self._norm(**norm_layer_params))

    relu_layer_params = self._build_activation_layer_params(param)
    self._parameterized_conv_layers.append(
        tf.keras.layers.Activation('relu', **relu_layer_params))

  def build(self, input_shape):
    self._parameterized_conv_layers = []
    for conv_layer_param in self._build_conv_layer_params(input_shape):
      self._append_conv_layer(conv_layer_param)
    super(ParameterizedConvLayer, self).build(input_shape)

  def call(self, inputs):
    x = inputs
    for layer in self._parameterized_conv_layers:
      x = layer(x)
    return x