train.py 3.24 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
Dan Kondratyuk's avatar
Dan Kondratyuk committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

r"""Training driver.

To train:

Dan Kondratyuk's avatar
Dan Kondratyuk committed
19
20
CONFIG_FILE=official/projects/movinet/configs/yaml/movinet_a0_k600_8x8.yaml
python3 official/projects/movinet/train.py \
Dan Kondratyuk's avatar
Dan Kondratyuk committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
    --experiment=movinet_kinetics600 \
    --mode=train \
    --model_dir=/tmp/movinet/ \
    --config_file=${CONFIG_FILE} \
    --params_override="" \
    --gin_file="" \
    --gin_params="" \
    --tpu="" \
    --tf_data_service=""
"""

from absl import app
from absl import flags
import gin

from official.common import distribute_utils
from official.common import flags as tfm_flags
from official.core import task_factory
from official.core import train_lib
from official.core import train_utils
from official.modeling import performance
# Import movinet libraries to register the backbone and model into tf.vision
# model garden factory.
# pylint: disable=unused-import
Dan Kondratyuk's avatar
Dan Kondratyuk committed
45
46
from official.projects.movinet.modeling import movinet
from official.projects.movinet.modeling import movinet_model
Yeqing Li's avatar
Yeqing Li committed
47
from official.vision import registry_imports
Dan Kondratyuk's avatar
Dan Kondratyuk committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
# pylint: enable=unused-import

FLAGS = flags.FLAGS


def main(_):
  gin.parse_config_files_and_bindings(FLAGS.gin_file, FLAGS.gin_params)
  params = train_utils.parse_configuration(FLAGS)
  model_dir = FLAGS.model_dir
  if 'train' in FLAGS.mode:
    # Pure eval modes do not output yaml files. Otherwise continuous eval job
    # may race against the train job for writing the same file.
    train_utils.serialize_config(params, model_dir)

  if 'train_and_eval' in FLAGS.mode:
    assert (params.task.train_data.feature_shape ==
            params.task.validation_data.feature_shape), (
                f'train {params.task.train_data.feature_shape} != validate '
                f'{params.task.validation_data.feature_shape}')

  # Sets mixed_precision policy. Using 'mixed_float16' or 'mixed_bfloat16'
  # can have significant impact on model speeds by utilizing float16 in case of
  # GPUs, and bfloat16 in the case of TPUs. loss_scale takes effect only when
  # dtype is float16
  if params.runtime.mixed_precision_dtype:
    performance.set_mixed_precision_policy(params.runtime.mixed_precision_dtype)
  distribution_strategy = distribute_utils.get_distribution_strategy(
      distribution_strategy=params.runtime.distribution_strategy,
      all_reduce_alg=params.runtime.all_reduce_alg,
      num_gpus=params.runtime.num_gpus,
      tpu_address=params.runtime.tpu)
  with distribution_strategy.scope():
    task = task_factory.get_task(params.task, logging_dir=model_dir)

  train_lib.run_experiment(
      distribution_strategy=distribution_strategy,
      task=task,
      mode=FLAGS.mode,
      params=params,
      model_dir=model_dir)

if __name__ == '__main__':
  tfm_flags.define_flags()
  app.run(main)