detection.py 5.37 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
vedanshu's avatar
vedanshu committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Detection input and model functions for serving/inference."""

17
from typing import Dict, Mapping, Text
Abdullah Rashwan's avatar
Abdullah Rashwan committed
18

vedanshu's avatar
vedanshu committed
19
20
import tensorflow as tf

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
21
22
23
from official.projects.deepmac_maskrcnn.configs import deep_mask_head_rcnn as cfg
from official.projects.deepmac_maskrcnn.modeling import maskrcnn_model
from official.projects.deepmac_maskrcnn.tasks import deep_mask_head_rcnn
Abdullah Rashwan's avatar
Abdullah Rashwan committed
24
25
from official.vision.ops import box_ops
from official.vision.serving import detection
vedanshu's avatar
vedanshu committed
26

27

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
def reverse_input_box_transformation(boxes, image_info):
  """Reverse the Mask R-CNN model's input boxes tranformation.

  Args:
    boxes: A [batch_size, num_boxes, 4] float tensor of boxes in normalized
      coordinates.
    image_info: a 2D `Tensor` that encodes the information of the image and the
      applied preprocessing. It is in the format of
      [[original_height, original_width], [desired_height, desired_width],
       [y_scale, x_scale], [y_offset, x_offset]], where [desired_height,
      desired_width] is the actual scaled image size, and [y_scale, x_scale] is
      the scaling factor, which is the ratio of
      scaled dimension / original dimension.

  Returns:
    boxes: Same shape as input `boxes` but in the absolute coordinate space of
      the preprocessed image.
  """
  # Reversing sequence from Detection_module.serve when
  # output_normalized_coordinates=true
  scale = image_info[:, 2:3, :]
  scale = tf.tile(scale, [1, 1, 2])
  boxes = boxes * scale
  height_width = image_info[:, 0:1, :]
  return box_ops.denormalize_boxes(boxes, height_width)


55
class DetectionModule(detection.DetectionModule):
vedanshu's avatar
vedanshu committed
56
57
58
59
60
61
  """Detection Module."""

  def _build_model(self):

    if self._batch_size is None:
      ValueError("batch_size can't be None for detection models")
Xianzhi Du's avatar
Xianzhi Du committed
62
    if self.params.task.model.detection_generator.nms_version != 'batched':
vedanshu's avatar
vedanshu committed
63
64
65
66
      ValueError('Only batched_nms is supported.')
    input_specs = tf.keras.layers.InputSpec(shape=[self._batch_size] +
                                            self._input_image_size + [3])

67
    if isinstance(self.params.task.model, cfg.DeepMaskHeadRCNN):
vedanshu's avatar
vedanshu committed
68
69
70
71
72
73
74
      model = deep_mask_head_rcnn.build_maskrcnn(
          input_specs=input_specs, model_config=self.params.task.model)
    else:
      raise ValueError('Detection module not implemented for {} model.'.format(
          type(self.params.task.model)))

    return model
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

  @tf.function
  def inference_for_tflite_image_and_boxes(
      self, images: tf.Tensor, boxes: tf.Tensor) -> Mapping[str, tf.Tensor]:
    """A tf-function for serve_image_and_boxes.

    Args:
      images: A [batch_size, height, width, channels] float tensor.
      boxes: A [batch_size, num_boxes, 4] float tensor containing boxes
        normalized to the input image.

    Returns:
      result: A dict containing:
        'detection_masks': A [batch_size, num_boxes, mask_height, mask_width]
          float tensor containing per-pixel mask probabilities.
    """

    if not isinstance(self.model, maskrcnn_model.DeepMaskRCNNModel):
      raise ValueError(
          ('Can only use image and boxes input for DeepMaskRCNNModel, '
           'Found {}'.format(type(self.model))))

    return self.serve_image_and_boxes(images, boxes)

  def serve_image_and_boxes(self, images: tf.Tensor, boxes: tf.Tensor):
    """Function used to export a model that consumes and image and boxes.

    The model predicts the class-agnostic masks at the given box locations.

    Args:
      images: A [batch_size, height, width, channels] float tensor.
      boxes: A [batch_size, num_boxes, 4] float tensor containing boxes
        normalized to the input image.

    Returns:
      result: A dict containing:
        'detection_masks': A [batch_size, num_boxes, mask_height, mask_width]
          float tensor containing per-pixel mask probabilities.
    """
    images, _, image_info = self.preprocess(images)
    boxes = reverse_input_box_transformation(boxes, image_info)
    result = self.model.call_images_and_boxes(images, boxes)
    return result

  def get_inference_signatures(self, function_keys: Dict[Text, Text]):
    signatures = {}

    if 'image_and_boxes_tensor' in function_keys:
      def_name = function_keys['image_and_boxes_tensor']
      image_signature = tf.TensorSpec(
          shape=[self._batch_size] + [None] * len(self._input_image_size) +
          [self._num_channels],
          dtype=tf.uint8)
      boxes_signature = tf.TensorSpec(shape=[self._batch_size, None, 4],
                                      dtype=tf.float32)
      tf_function = self.inference_for_tflite_image_and_boxes
      signatures[def_name] = tf_function.get_concrete_function(
          image_signature, boxes_signature)

    function_keys.pop('image_and_boxes_tensor', None)
    parent_signatures = super(DetectionModule, self).get_inference_signatures(
        function_keys)
    signatures.update(parent_signatures)

    return signatures