trainer.py 14.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Detection model trainer.

This file provides a generic training method that can be used to train a
DetectionModel.
"""

import functools

import tensorflow as tf

from object_detection.builders import optimizer_builder
from object_detection.builders import preprocessor_builder
from object_detection.core import batcher
from object_detection.core import preprocessor
from object_detection.core import standard_fields as fields
from object_detection.utils import ops as util_ops
from object_detection.utils import variables_helper
from deployment import model_deploy

slim = tf.contrib.slim


38
39
40
def create_input_queue(batch_size_per_clone, create_tensor_dict_fn,
                       batch_queue_capacity, num_batch_queue_threads,
                       prefetch_queue_capacity, data_augmentation_options):
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
  """Sets up reader, prefetcher and returns input queue.

  Args:
    batch_size_per_clone: batch size to use per clone.
    create_tensor_dict_fn: function to create tensor dictionary.
    batch_queue_capacity: maximum number of elements to store within a queue.
    num_batch_queue_threads: number of threads to use for batching.
    prefetch_queue_capacity: maximum capacity of the queue used to prefetch
                             assembled batches.
    data_augmentation_options: a list of tuples, where each tuple contains a
      data augmentation function and a dictionary containing arguments and their
      values (see preprocessor.py).

  Returns:
    input queue: a batcher.BatchQueue object holding enqueued tensor_dicts
      (which hold images, boxes and targets).  To get a batch of tensor_dicts,
      call input_queue.Dequeue().
  """
  tensor_dict = create_tensor_dict_fn()

  tensor_dict[fields.InputDataFields.image] = tf.expand_dims(
      tensor_dict[fields.InputDataFields.image], 0)

  images = tensor_dict[fields.InputDataFields.image]
  float_images = tf.to_float(images)
  tensor_dict[fields.InputDataFields.image] = float_images

68
69
70
71
  include_instance_masks = (fields.InputDataFields.groundtruth_instance_masks
                            in tensor_dict)
  include_keypoints = (fields.InputDataFields.groundtruth_keypoints
                       in tensor_dict)
72
  if data_augmentation_options:
73
74
75
76
77
    tensor_dict = preprocessor.preprocess(
        tensor_dict, data_augmentation_options,
        func_arg_map=preprocessor.get_default_func_arg_map(
            include_instance_masks=include_instance_masks,
            include_keypoints=include_keypoints))
78
79
80
81
82
83
84
85
86
87

  input_queue = batcher.BatchQueue(
      tensor_dict,
      batch_size=batch_size_per_clone,
      batch_queue_capacity=batch_queue_capacity,
      num_batch_queue_threads=num_batch_queue_threads,
      prefetch_queue_capacity=prefetch_queue_capacity)
  return input_queue


88
89
def get_inputs(input_queue, num_classes, merge_multiple_label_boxes=False):
  """Dequeues batch and constructs inputs to object detection model.
90
91
92
93

  Args:
    input_queue: BatchQueue object holding enqueued tensor_dicts.
    num_classes: Number of classes.
94
95
96
97
    merge_multiple_label_boxes: Whether to merge boxes with multiple labels
      or not. Defaults to false. Merged boxes are represented with a single
      box and a k-hot encoding of the multiple labels associated with the
      boxes.
98
99
100

  Returns:
    images: a list of 3-D float tensor of images.
101
    image_keys: a list of string keys for the images.
102
103
104
105
106
107
    locations_list: a list of tensors of shape [num_boxes, 4]
      containing the corners of the groundtruth boxes.
    classes_list: a list of padded one-hot tensors containing target classes.
    masks_list: a list of 3-D float tensors of shape [num_boxes, image_height,
      image_width] containing instance masks for objects if present in the
      input_queue. Else returns None.
108
109
110
    keypoints_list: a list of 3-D float tensors of shape [num_boxes,
      num_keypoints, 2] containing keypoints for objects if present in the
      input queue. Else returns None.
111
112
113
114
  """
  read_data_list = input_queue.dequeue()
  label_id_offset = 1
  def extract_images_and_targets(read_data):
115
    """Extract images and targets from the input dict."""
116
    image = read_data[fields.InputDataFields.image]
117
118
119
    key = ''
    if fields.InputDataFields.source_id in read_data:
      key = read_data[fields.InputDataFields.source_id]
120
121
122
123
    location_gt = read_data[fields.InputDataFields.groundtruth_boxes]
    classes_gt = tf.cast(read_data[fields.InputDataFields.groundtruth_classes],
                         tf.int32)
    classes_gt -= label_id_offset
124
125
126
127
128
129
    if merge_multiple_label_boxes:
      location_gt, classes_gt, _ = util_ops.merge_boxes_with_multiple_labels(
          location_gt, classes_gt, num_classes)
    else:
      classes_gt = util_ops.padded_one_hot_encoding(
          indices=classes_gt, depth=num_classes, left_pad=0)
130
    masks_gt = read_data.get(fields.InputDataFields.groundtruth_instance_masks)
131
132
133
134
135
136
    keypoints_gt = read_data.get(fields.InputDataFields.groundtruth_keypoints)
    if (merge_multiple_label_boxes and (
        masks_gt is not None or keypoints_gt is not None)):
      raise NotImplementedError('Multi-label support is only for boxes.')
    return image, key, location_gt, classes_gt, masks_gt, keypoints_gt

137
138
139
  return zip(*map(extract_images_and_targets, read_data_list))


140
def _create_losses(input_queue, create_model_fn, train_config):
141
142
143
144
145
  """Creates loss function for a DetectionModel.

  Args:
    input_queue: BatchQueue object holding enqueued tensor_dicts.
    create_model_fn: A function to create the DetectionModel.
146
    train_config: a train_pb2.TrainConfig protobuf.
147
148
  """
  detection_model = create_model_fn()
149
150
151
152
153
  (images, _, groundtruth_boxes_list, groundtruth_classes_list,
   groundtruth_masks_list, groundtruth_keypoints_list) = get_inputs(
       input_queue,
       detection_model.num_classes,
       train_config.merge_multiple_label_boxes)
154
155
156
157
  images = [detection_model.preprocess(image) for image in images]
  images = tf.concat(images, 0)
  if any(mask is None for mask in groundtruth_masks_list):
    groundtruth_masks_list = None
158
159
  if any(keypoints is None for keypoints in groundtruth_keypoints_list):
    groundtruth_keypoints_list = None
160
161
162

  detection_model.provide_groundtruth(groundtruth_boxes_list,
                                      groundtruth_classes_list,
163
164
                                      groundtruth_masks_list,
                                      groundtruth_keypoints_list)
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
  prediction_dict = detection_model.predict(images)

  losses_dict = detection_model.loss(prediction_dict)
  for loss_tensor in losses_dict.values():
    tf.losses.add_loss(loss_tensor)


def train(create_tensor_dict_fn, create_model_fn, train_config, master, task,
          num_clones, worker_replicas, clone_on_cpu, ps_tasks, worker_job_name,
          is_chief, train_dir):
  """Training function for detection models.

  Args:
    create_tensor_dict_fn: a function to create a tensor input dictionary.
    create_model_fn: a function that creates a DetectionModel and generates
                     losses.
    train_config: a train_pb2.TrainConfig protobuf.
    master: BNS name of the TensorFlow master to use.
    task: The task id of this training instance.
    num_clones: The number of clones to run per machine.
    worker_replicas: The number of work replicas to train with.
    clone_on_cpu: True if clones should be forced to run on CPU.
    ps_tasks: Number of parameter server tasks.
    worker_job_name: Name of the worker job.
    is_chief: Whether this replica is the chief replica.
    train_dir: Directory to write checkpoints and training summaries to.
  """

  detection_model = create_model_fn()
  data_augmentation_options = [
      preprocessor_builder.build(step)
      for step in train_config.data_augmentation_options]

  with tf.Graph().as_default():
    # Build a configuration specifying multi-GPU and multi-replicas.
    deploy_config = model_deploy.DeploymentConfig(
        num_clones=num_clones,
        clone_on_cpu=clone_on_cpu,
        replica_id=task,
        num_replicas=worker_replicas,
        num_ps_tasks=ps_tasks,
        worker_job_name=worker_job_name)

    # Place the global step on the device storing the variables.
    with tf.device(deploy_config.variables_device()):
      global_step = slim.create_global_step()

    with tf.device(deploy_config.inputs_device()):
213
214
215
216
217
      input_queue = create_input_queue(
          train_config.batch_size // num_clones, create_tensor_dict_fn,
          train_config.batch_queue_capacity,
          train_config.num_batch_queue_threads,
          train_config.prefetch_queue_capacity, data_augmentation_options)
218
219

    # Gather initial summaries.
220
221
    # TODO(rathodv): See if summaries can be added/extracted from global tf
    # collections so that they don't have to be passed around.
222
223
224
225
    summaries = set(tf.get_collection(tf.GraphKeys.SUMMARIES))
    global_summaries = set([])

    model_fn = functools.partial(_create_losses,
226
227
                                 create_model_fn=create_model_fn,
                                 train_config=train_config)
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
    clones = model_deploy.create_clones(deploy_config, model_fn, [input_queue])
    first_clone_scope = clones[0].scope

    # Gather update_ops from the first clone. These contain, for example,
    # the updates for the batch_norm variables created by model_fn.
    update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, first_clone_scope)

    with tf.device(deploy_config.optimizer_device()):
      training_optimizer = optimizer_builder.build(train_config.optimizer,
                                                   global_summaries)

    sync_optimizer = None
    if train_config.sync_replicas:
      training_optimizer = tf.SyncReplicasOptimizer(
          training_optimizer,
          replicas_to_aggregate=train_config.replicas_to_aggregate,
          total_num_replicas=train_config.worker_replicas)
      sync_optimizer = training_optimizer

    # Create ops required to initialize the model from a given checkpoint.
    init_fn = None
    if train_config.fine_tune_checkpoint:
250
      var_map = detection_model.restore_map(
251
          from_detection_checkpoint=train_config.from_detection_checkpoint)
Derek Chow's avatar
Derek Chow committed
252
253
254
255
      available_var_map = (variables_helper.
                           get_variables_available_in_checkpoint(
                               var_map, train_config.fine_tune_checkpoint))
      init_saver = tf.train.Saver(available_var_map)
256
      def initializer_fn(sess):
Derek Chow's avatar
Derek Chow committed
257
        init_saver.restore(sess, train_config.fine_tune_checkpoint)
258
      init_fn = initializer_fn
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332

    with tf.device(deploy_config.optimizer_device()):
      total_loss, grads_and_vars = model_deploy.optimize_clones(
          clones, training_optimizer, regularization_losses=None)
      total_loss = tf.check_numerics(total_loss, 'LossTensor is inf or nan.')

      # Optionally multiply bias gradients by train_config.bias_grad_multiplier.
      if train_config.bias_grad_multiplier:
        biases_regex_list = ['.*/biases']
        grads_and_vars = variables_helper.multiply_gradients_matching_regex(
            grads_and_vars,
            biases_regex_list,
            multiplier=train_config.bias_grad_multiplier)

      # Optionally freeze some layers by setting their gradients to be zero.
      if train_config.freeze_variables:
        grads_and_vars = variables_helper.freeze_gradients_matching_regex(
            grads_and_vars, train_config.freeze_variables)

      # Optionally clip gradients
      if train_config.gradient_clipping_by_norm > 0:
        with tf.name_scope('clip_grads'):
          grads_and_vars = slim.learning.clip_gradient_norms(
              grads_and_vars, train_config.gradient_clipping_by_norm)

      # Create gradient updates.
      grad_updates = training_optimizer.apply_gradients(grads_and_vars,
                                                        global_step=global_step)
      update_ops.append(grad_updates)

      update_op = tf.group(*update_ops)
      with tf.control_dependencies([update_op]):
        train_tensor = tf.identity(total_loss, name='train_op')

    # Add summaries.
    for model_var in slim.get_model_variables():
      global_summaries.add(tf.summary.histogram(model_var.op.name, model_var))
    for loss_tensor in tf.losses.get_losses():
      global_summaries.add(tf.summary.scalar(loss_tensor.op.name, loss_tensor))
    global_summaries.add(
        tf.summary.scalar('TotalLoss', tf.losses.get_total_loss()))

    # Add the summaries from the first clone. These contain the summaries
    # created by model_fn and either optimize_clones() or _gather_clone_loss().
    summaries |= set(tf.get_collection(tf.GraphKeys.SUMMARIES,
                                       first_clone_scope))
    summaries |= global_summaries

    # Merge all summaries together.
    summary_op = tf.summary.merge(list(summaries), name='summary_op')

    # Soft placement allows placing on CPU ops without GPU implementation.
    session_config = tf.ConfigProto(allow_soft_placement=True,
                                    log_device_placement=False)

    # Save checkpoints regularly.
    keep_checkpoint_every_n_hours = train_config.keep_checkpoint_every_n_hours
    saver = tf.train.Saver(
        keep_checkpoint_every_n_hours=keep_checkpoint_every_n_hours)

    slim.learning.train(
        train_tensor,
        logdir=train_dir,
        master=master,
        is_chief=is_chief,
        session_config=session_config,
        startup_delay_steps=train_config.startup_delay_steps,
        init_fn=init_fn,
        summary_op=summary_op,
        number_of_steps=(
            train_config.num_steps if train_config.num_steps else None),
        save_summaries_secs=120,
        sync_optimizer=sync_optimizer,
        saver=saver)