mnist_tpu.py 7.38 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""MNIST model training using TPUs.

This program demonstrates training of the convolutional neural network model
defined in mnist.py on Google Cloud TPUs (https://cloud.google.com/tpu/).

If you are not interested in TPUs, you should ignore this file.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import sys

# pylint: disable=g-bad-import-order
from absl import app as absl_app  # pylint: disable=unused-import
import tensorflow as tf
# pylint: enable=g-bad-import-order

# For open source environment, add grandparent directory for import
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(sys.path[0]))))
36
37
from tensorflow.contrib import cluster_resolver as contrib_cluster_resolver
from tensorflow.contrib import tpu as contrib_tpu
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

from official.r1.mnist import dataset  # pylint: disable=wrong-import-position
from official.r1.mnist import mnist  # pylint: disable=wrong-import-position

# Cloud TPU Cluster Resolver flags
tf.flags.DEFINE_string(
    "tpu", default=None,
    help="The Cloud TPU to use for training. This should be either the name "
    "used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 "
    "url.")
tf.flags.DEFINE_string(
    "tpu_zone", default=None,
    help="[Optional] GCE zone where the Cloud TPU is located in. If not "
    "specified, we will attempt to automatically detect the GCE project from "
    "metadata.")
tf.flags.DEFINE_string(
    "gcp_project", default=None,
    help="[Optional] Project name for the Cloud TPU-enabled project. If not "
    "specified, we will attempt to automatically detect the GCE project from "
    "metadata.")

# Model specific parameters
tf.flags.DEFINE_string("data_dir", "",
                       "Path to directory containing the MNIST dataset")
tf.flags.DEFINE_string("model_dir", None, "Estimator model_dir")
tf.flags.DEFINE_integer("batch_size", 1024,
                        "Mini-batch size for the training. Note that this "
                        "is the global batch size and not the per-shard batch.")
tf.flags.DEFINE_integer("train_steps", 1000, "Total number of training steps.")
tf.flags.DEFINE_integer("eval_steps", 0,
                        "Total number of evaluation steps. If `0`, evaluation "
                        "after training is skipped.")
tf.flags.DEFINE_float("learning_rate", 0.05, "Learning rate.")

tf.flags.DEFINE_bool("use_tpu", True, "Use TPUs rather than plain CPUs")
tf.flags.DEFINE_bool("enable_predict", True, "Do some predictions at the end")
tf.flags.DEFINE_integer("iterations", 50,
                        "Number of iterations per TPU training loop.")
tf.flags.DEFINE_integer("num_shards", 8, "Number of shards (TPU chips).")

FLAGS = tf.flags.FLAGS


def metric_fn(labels, logits):
  accuracy = tf.metrics.accuracy(
      labels=labels, predictions=tf.argmax(logits, axis=1))
  return {"accuracy": accuracy}


def model_fn(features, labels, mode, params):
  """model_fn constructs the ML model used to predict handwritten digits."""

  del params
  image = features
  if isinstance(image, dict):
    image = features["image"]

  model = mnist.create_model("channels_last")

  if mode == tf.estimator.ModeKeys.PREDICT:
    logits = model(image, training=False)
    predictions = {
        'class_ids': tf.argmax(logits, axis=1),
        'probabilities': tf.nn.softmax(logits),
    }
103
    return contrib_tpu.TPUEstimatorSpec(mode, predictions=predictions)
104
105
106
107
108
109
110
111
112
113
114
115

  logits = model(image, training=(mode == tf.estimator.ModeKeys.TRAIN))
  loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)

  if mode == tf.estimator.ModeKeys.TRAIN:
    learning_rate = tf.train.exponential_decay(
        FLAGS.learning_rate,
        tf.train.get_global_step(),
        decay_steps=100000,
        decay_rate=0.96)
    optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
    if FLAGS.use_tpu:
116
117
      optimizer = contrib_tpu.CrossShardOptimizer(optimizer)
    return contrib_tpu.TPUEstimatorSpec(
118
119
120
121
122
        mode=mode,
        loss=loss,
        train_op=optimizer.minimize(loss, tf.train.get_global_step()))

  if mode == tf.estimator.ModeKeys.EVAL:
123
    return contrib_tpu.TPUEstimatorSpec(
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
        mode=mode, loss=loss, eval_metrics=(metric_fn, [labels, logits]))


def train_input_fn(params):
  """train_input_fn defines the input pipeline used for training."""
  batch_size = params["batch_size"]
  data_dir = params["data_dir"]
  # Retrieves the batch size for the current shard. The # of shards is
  # computed according to the input pipeline deployment. See
  # `tf.contrib.tpu.RunConfig` for details.
  ds = dataset.train(data_dir).cache().repeat().shuffle(
      buffer_size=50000).batch(batch_size, drop_remainder=True)
  return ds


def eval_input_fn(params):
  batch_size = params["batch_size"]
  data_dir = params["data_dir"]
  ds = dataset.test(data_dir).batch(batch_size, drop_remainder=True)
  return ds


def predict_input_fn(params):
  batch_size = params["batch_size"]
  data_dir = params["data_dir"]
  # Take out top 10 samples from test data to make the predictions.
  ds = dataset.test(data_dir).take(10).batch(batch_size)
  return ds


def main(argv):
  del argv  # Unused.
  tf.logging.set_verbosity(tf.logging.INFO)

158
159
  tpu_cluster_resolver = contrib_cluster_resolver.TPUClusterResolver(
      FLAGS.tpu, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)
160

161
  run_config = contrib_tpu.RunConfig(
162
163
164
165
      cluster=tpu_cluster_resolver,
      model_dir=FLAGS.model_dir,
      session_config=tf.ConfigProto(
          allow_soft_placement=True, log_device_placement=True),
166
      tpu_config=contrib_tpu.TPUConfig(FLAGS.iterations, FLAGS.num_shards),
167
168
  )

169
  estimator = contrib_tpu.TPUEstimator(
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
      model_fn=model_fn,
      use_tpu=FLAGS.use_tpu,
      train_batch_size=FLAGS.batch_size,
      eval_batch_size=FLAGS.batch_size,
      predict_batch_size=FLAGS.batch_size,
      params={"data_dir": FLAGS.data_dir},
      config=run_config)
  # TPUEstimator.train *requires* a max_steps argument.
  estimator.train(input_fn=train_input_fn, max_steps=FLAGS.train_steps)
  # TPUEstimator.evaluate *requires* a steps argument.
  # Note that the number of examples used during evaluation is
  # --eval_steps * --batch_size.
  # So if you change --batch_size then change --eval_steps too.
  if FLAGS.eval_steps:
    estimator.evaluate(input_fn=eval_input_fn, steps=FLAGS.eval_steps)

  # Run prediction on top few samples of test data.
  if FLAGS.enable_predict:
    predictions = estimator.predict(input_fn=predict_input_fn)

    for pred_dict in predictions:
      template = ('Prediction is "{}" ({:.1f}%).')

      class_id = pred_dict['class_ids']
      probability = pred_dict['probabilities'][class_id]

      print(template.format(class_id, 100 * probability))


if __name__ == "__main__":
  absl_app.run(main)