compute_bleu.py 5.23 KB
Newer Older
Katherine Wu's avatar
Katherine Wu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Script to compute official BLEU score.

Source:
https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/bleu_hook.py
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import re
import sys
import unicodedata

Hongkun Yu's avatar
Hongkun Yu committed
29
from absl import app
30
from absl import flags
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
31
32
import six
from six.moves import range
Katherine Wu's avatar
Katherine Wu committed
33
34
import tensorflow as tf

35
36
from official.nlp.transformer.utils import metrics
from official.nlp.transformer.utils import tokenizer
37
from official.utils.flags import core as flags_core
Katherine Wu's avatar
Katherine Wu committed
38
39
40
41
42
43
44
45
46
47
48
49


class UnicodeRegex(object):
  """Ad-hoc hack to recognize all punctuation and symbols."""

  def __init__(self):
    punctuation = self.property_chars("P")
    self.nondigit_punct_re = re.compile(r"([^\d])([" + punctuation + r"])")
    self.punct_nondigit_re = re.compile(r"([" + punctuation + r"])([^\d])")
    self.symbol_re = re.compile("([" + self.property_chars("S") + "])")

  def property_chars(self, prefix):
50
51
52
53
    return "".join(
        six.unichr(x)
        for x in range(sys.maxunicode)
        if unicodedata.category(six.unichr(x)).startswith(prefix))
Katherine Wu's avatar
Katherine Wu committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90


uregex = UnicodeRegex()


def bleu_tokenize(string):
  r"""Tokenize a string following the official BLEU implementation.

  See https://github.com/moses-smt/mosesdecoder/'
           'blob/master/scripts/generic/mteval-v14.pl#L954-L983
  In our case, the input string is expected to be just one line
  and no HTML entities de-escaping is needed.
  So we just tokenize on punctuation and symbols,
  except when a punctuation is preceded and followed by a digit
  (e.g. a comma/dot as a thousand/decimal separator).

  Note that a numer (e.g. a year) followed by a dot at the end of sentence
  is NOT tokenized,
  i.e. the dot stays with the number because `s/(\p{P})(\P{N})/ $1 $2/g`
  does not match this case (unless we add a space after each sentence).
  However, this error is already in the original mteval-v14.pl
  and we want to be consistent with it.

  Args:
    string: the input string

  Returns:
    a list of tokens
  """
  string = uregex.nondigit_punct_re.sub(r"\1 \2 ", string)
  string = uregex.punct_nondigit_re.sub(r" \1 \2", string)
  string = uregex.symbol_re.sub(r" \1 ", string)
  return string.split()


def bleu_wrapper(ref_filename, hyp_filename, case_sensitive=False):
  """Compute BLEU for two files (reference and hypothesis translation)."""
91
  ref_lines = tokenizer.native_to_unicode(
guptapriya's avatar
guptapriya committed
92
      tf.io.gfile.GFile(ref_filename).read()).strip().splitlines()
93
  hyp_lines = tokenizer.native_to_unicode(
guptapriya's avatar
guptapriya committed
94
      tf.io.gfile.GFile(hyp_filename).read()).strip().splitlines()
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
95
  return bleu_on_list(ref_lines, hyp_lines, case_sensitive)
Katherine Wu's avatar
Katherine Wu committed
96

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
97
98
99

def bleu_on_list(ref_lines, hyp_lines, case_sensitive=False):
  """Compute BLEU for two list of strings (reference and hypothesis)."""
Katherine Wu's avatar
Katherine Wu committed
100
  if len(ref_lines) != len(hyp_lines):
101
102
103
104
    raise ValueError(
        "Reference and translation files have different number of "
        "lines (%d VS %d). If training only a few steps (100-200), the "
        "translation may be empty." % (len(ref_lines), len(hyp_lines)))
Katherine Wu's avatar
Katherine Wu committed
105
106
107
108
109
110
111
112
113
  if not case_sensitive:
    ref_lines = [x.lower() for x in ref_lines]
    hyp_lines = [x.lower() for x in hyp_lines]
  ref_tokens = [bleu_tokenize(x) for x in ref_lines]
  hyp_tokens = [bleu_tokenize(x) for x in hyp_lines]
  return metrics.compute_bleu(ref_tokens, hyp_tokens) * 100


def main(unused_argv):
114
  if FLAGS.bleu_variant in ("both", "uncased"):
Katherine Wu's avatar
Katherine Wu committed
115
    score = bleu_wrapper(FLAGS.reference, FLAGS.translation, False)
116
    tf.logging.info("Case-insensitive results: %f" % score)
Katherine Wu's avatar
Katherine Wu committed
117

118
  if FLAGS.bleu_variant in ("both", "cased"):
Katherine Wu's avatar
Katherine Wu committed
119
    score = bleu_wrapper(FLAGS.reference, FLAGS.translation, True)
120
121
122
123
124
125
    tf.logging.info("Case-sensitive results: %f" % score)


def define_compute_bleu_flags():
  """Add flags for computing BLEU score."""
  flags.DEFINE_string(
126
127
      name="translation",
      default=None,
128
129
130
131
      help=flags_core.help_wrap("File containing translated text."))
  flags.mark_flag_as_required("translation")

  flags.DEFINE_string(
132
133
      name="reference",
      default=None,
134
135
136
137
      help=flags_core.help_wrap("File containing reference translation."))
  flags.mark_flag_as_required("reference")

  flags.DEFINE_enum(
138
139
140
141
142
      name="bleu_variant",
      short_name="bv",
      default="both",
      enum_values=["both", "uncased", "cased"],
      case_sensitive=False,
143
144
145
      help=flags_core.help_wrap(
          "Specify one or more BLEU variants to calculate. Variants: \"cased\""
          ", \"uncased\", or \"both\"."))
Katherine Wu's avatar
Katherine Wu committed
146
147
148


if __name__ == "__main__":
149
150
151
  tf.logging.set_verbosity(tf.logging.INFO)
  define_compute_bleu_flags()
  FLAGS = flags.FLAGS
Hongkun Yu's avatar
Hongkun Yu committed
152
  app.run(main)