utils.py 2.51 KB
Newer Older
Chen Chen's avatar
Chen Chen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Common utils for tasks."""
17
18
19
from typing import Any, Callable

import orbit
Chen Chen's avatar
Chen Chen committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import tensorflow as tf
import tensorflow_hub as hub


def get_encoder_from_hub(hub_module: str) -> tf.keras.Model:
  """Gets an encoder from hub."""
  input_word_ids = tf.keras.layers.Input(
      shape=(None,), dtype=tf.int32, name='input_word_ids')
  input_mask = tf.keras.layers.Input(
      shape=(None,), dtype=tf.int32, name='input_mask')
  input_type_ids = tf.keras.layers.Input(
      shape=(None,), dtype=tf.int32, name='input_type_ids')
  hub_layer = hub.KerasLayer(hub_module, trainable=True)
  pooled_output, sequence_output = hub_layer(
      [input_word_ids, input_mask, input_type_ids])
  return tf.keras.Model(
      inputs=[input_word_ids, input_mask, input_type_ids],
      outputs=[sequence_output, pooled_output])
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68


def predict(predict_step_fn: Callable[[Any], Any],
            aggregate_fn: Callable[[Any, Any], Any],
            dataset: tf.data.Dataset):
  """Runs prediction.

  Args:
    predict_step_fn: A callable such as `def predict_step(inputs)`, where
      `inputs` are input tensors.
    aggregate_fn: A callable such as `def aggregate_fn(state, value)`, where
        `value` is the outputs from `predict_step_fn`.
    dataset: A `tf.data.Dataset` object.

  Returns:
    The aggregated predictions.
  """

  @tf.function
  def predict_step(iterator):
    """Predicts on distributed devices."""
    outputs = tf.distribute.get_strategy().run(
        predict_step_fn, args=(next(iterator),))
    return tf.nest.map_structure(
        tf.distribute.get_strategy().experimental_local_results, outputs)

  loop_fn = orbit.utils.create_loop_fn(predict_step)
  # Set `num_steps` to -1 to exhaust the dataset.
  outputs = loop_fn(
      iter(dataset), num_steps=-1, state=None, reduce_fn=aggregate_fn)  # pytype: disable=wrong-arg-types
  return outputs