README.md 5.66 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
![Logo](https://storage.googleapis.com/model_garden_artifacts/TF_Model_Garden.png)
2

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
3
# TensorFlow Official Models
4

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
5
6
7
8
The TensorFlow official models are a collection of models
that use TensorFlow’s high-level APIs.
They are intended to be well-maintained, tested, and kept up to date
with the latest TensorFlow API.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
9

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
10
11
12
13
They should also be reasonably optimized for fast performance while still
being easy to read.
These models are used as end-to-end tests, ensuring that the models run
with the same or improved speed and performance with each new TensorFlow build.
14

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
15
## More models to come!
16

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
17
18
19
The team is actively developing new models.
In the near future, we will add:

20
21
22
* State-of-the-art language understanding models.
* State-of-the-art image classification models.
* State-of-the-art objection detection and instance segmentation models.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
23
24

## Table of Contents
25

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
26
27
28
29
30
31
32
33
34
- [Models and Implementations](#models-and-implementations)
  * [Computer Vision](#computer-vision)
    + [Image Classification](#image-classification)
    + [Object Detection and Segmentation](#object-detection-and-segmentation)
  * [Natural Language Processing](#natural-language-processing)
  * [Recommendation](#recommendation)
- [How to get started with the official models](#how-to-get-started-with-the-official-models)

## Models and Implementations
Hongkun Yu's avatar
Hongkun Yu committed
35

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
36
### Computer Vision
Hongkun Yu's avatar
Hongkun Yu committed
37

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
38
39
40
41
42
43
#### Image Classification

| Model | Reference (Paper) |
|-------|-------------------|
| [MNIST](vision/image_classification) | A basic model to classify digits from the [MNIST dataset](http://yann.lecun.com/exdb/mnist/) |
| [ResNet](vision/image_classification) | [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) |
44
| [EfficientNet](vision/image_classification) | [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) |
45

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
46
#### Object Detection and Segmentation
47

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
48
49
50
51
| Model | Reference (Paper) |
|-------|-------------------|
| [RetinaNet](vision/detection) | [Focal Loss for Dense Object Detection](https://arxiv.org/abs/1708.02002) |
| [Mask R-CNN](vision/detection) | [Mask R-CNN](https://arxiv.org/abs/1703.06870) |
52
| [ShapeMask](vision/detection) | [ShapeMask: Learning to Segment Novel Objects by Refining Shape Priors](https://arxiv.org/abs/1904.03239) |
53
| [SpineNet](vision/detection) | [SpineNet: Learning Scale-Permuted Backbone for Recognition and Localization](https://arxiv.org/abs/1912.05027) |
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
54
55

### Natural Language Processing
56

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
57
58
59
60
61
62
63
| Model | Reference (Paper) |
|-------|-------------------|
| [ALBERT (A Lite BERT)](nlp/albert) | [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942) |
| [BERT (Bidirectional Encoder Representations from Transformers)](nlp/bert) | [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) |
| [NHNet (News Headline generation model)](nlp/nhnet) | [Generating Representative Headlines for News Stories](https://arxiv.org/abs/2001.09386) |
| [Transformer](nlp/transformer) | [Attention Is All You Need](https://arxiv.org/abs/1706.03762) |
| [XLNet](nlp/xlnet) | [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) |
64

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
65
66
67
68
69
70
71
### Recommendation

| Model | Reference (Paper) |
|-------|-------------------|
| [NCF](recommendation) | [Neural Collaborative Filtering](https://arxiv.org/abs/1708.05031) |

## How to get started with the official models
Hongkun Yu's avatar
Hongkun Yu committed
72

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
73
74
75
76
77
78
79
80
* The models in the master branch are developed using TensorFlow 2,
and they target the TensorFlow [nightly binaries](https://github.com/tensorflow/tensorflow#installation)
built from the
[master branch of TensorFlow](https://github.com/tensorflow/tensorflow/tree/master).
* The stable versions targeting releases of TensorFlow are available
as tagged branches or [downloadable releases](https://github.com/tensorflow/models/releases).
* Model repository version numbers match the target TensorFlow release,
such that
Hongkun Yu's avatar
Hongkun Yu committed
81
[release v2.2.0](https://github.com/tensorflow/models/releases/tag/v2.2.0)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
82
are compatible with
Hongkun Yu's avatar
Hongkun Yu committed
83
[TensorFlow v2.2.0](https://github.com/tensorflow/tensorflow/releases/tag/v2.2.0).
Hongkun Yu's avatar
Hongkun Yu committed
84

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
85
Please follow the below steps before running models in this repository.
86

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
87
### Requirements
88

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
89
* The latest TensorFlow Model Garden release and TensorFlow 2
Hongkun Yu's avatar
Hongkun Yu committed
90
  * If you are on a version of TensorFlow earlier than 2.2, please
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
91
upgrade your TensorFlow to [the latest TensorFlow 2](https://www.tensorflow.org/install/).
Hongkun Yu's avatar
Hongkun Yu committed
92

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
93
94
95
```shell
pip3 install tf-nightly
```
Hongkun Yu's avatar
Hongkun Yu committed
96

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
97
### Installation
Hongkun Yu's avatar
Hongkun Yu committed
98

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
99
#### Method 1: Install the TensorFlow Model Garden pip package
Hongkun Yu's avatar
Hongkun Yu committed
100

101
102
**tf-models-official** is the stable Model Garden package.
pip will install all models and dependencies automatically.
103

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
104
```shell
105
pip install tf-models-official
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
106
```
107

Jared T Nielsen's avatar
Jared T Nielsen committed
108
Please check out our [example](colab/fine_tuning_bert.ipynb)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
109
to learn how to use a PIP package.
110

111
112
113
114
115
116
117
118
Note that **tf-models-official** may not include the latest changes in this
github repo. To include latest changes, you may install **tf-models-nightly**,
which is the nightly Model Garden package created daily automatically.

```shell
pip install tf-models-nightly
```

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
119
#### Method 2: Clone the source
120

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
121
1. Clone the GitHub repository:
122

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
123
124
125
```shell
git clone https://github.com/tensorflow/models.git
```
126

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
127
2. Add the top-level ***/models*** folder to the Python path.
128

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
129
130
131
```shell
export PYTHONPATH=$PYTHONPATH:/path/to/models
```
132

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
133
If you are using a Colab notebook, please set the Python path with os.environ.
134

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
135
136
137
138
```python
import os
os.environ['PYTHONPATH'] += ":/path/to/models"
```
139

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
140
3. Install other dependencies
141

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
142
143
144
```shell
pip3 install --user -r official/requirements.txt
```
Hongkun Yu's avatar
Hongkun Yu committed
145

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
146
## Contributions
147

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
148
If you want to contribute, please review the [contribution guidelines](https://github.com/tensorflow/models/wiki/How-to-contribute).