test_utils.py 1.34 KB
Newer Older
Yeqing Li's avatar
Yeqing Li committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Haoyu Zhang's avatar
Haoyu Zhang committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Yeqing Li's avatar
Yeqing Li committed
14

Allen Wang's avatar
Allen Wang committed
15
"""Test utilities for image classification tasks."""
Haoyu Zhang's avatar
Haoyu Zhang committed
16
17
18
19
20
21
22
23
24
25

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from tensorflow.python.keras import backend
from tensorflow.python.keras import layers
from tensorflow.python.keras import models


26
def trivial_model(num_classes):
Haoyu Zhang's avatar
Haoyu Zhang committed
27
28
29
  """Trivial model for ImageNet dataset."""

  input_shape = (224, 224, 3)
30
  img_input = layers.Input(shape=input_shape)
Haoyu Zhang's avatar
Haoyu Zhang committed
31
32
33

  x = layers.Lambda(lambda x: backend.reshape(x, [-1, 224 * 224 * 3]),
                    name='reshape')(img_input)
34
  x = layers.Dense(1, name='fc1')(x)
35
  x = layers.Dense(num_classes, name='fc1000')(x)
36
  x = layers.Activation('softmax', dtype='float32')(x)
Haoyu Zhang's avatar
Haoyu Zhang committed
37
38

  return models.Model(img_input, x, name='trivial')