segmentation_input.py 7.58 KB
Newer Older
Abdullah Rashwan's avatar
Abdullah Rashwan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Data parser and processing for segmentation datasets."""

import tensorflow as tf
from official.vision.beta.dataloaders import decoder
from official.vision.beta.dataloaders import parser
from official.vision.beta.ops import preprocess_ops


class Decoder(decoder.Decoder):
  """A tf.Example decoder for segmentation task."""

  def __init__(self):
    self._keys_to_features = {
        'image/encoded': tf.io.FixedLenFeature((), tf.string, default_value=''),
        'image/height': tf.io.FixedLenFeature((), tf.int64, default_value=0),
        'image/width': tf.io.FixedLenFeature((), tf.int64, default_value=0),
        'image/segmentation/class/encoded':
            tf.io.FixedLenFeature((), tf.string, default_value='')
    }

  def decode(self, serialized_example):
    return tf.io.parse_single_example(
        serialized_example, self._keys_to_features)


class Parser(parser.Parser):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
41
42
  """Parser to parse an image and its annotations into a dictionary of tensors.
  """
Abdullah Rashwan's avatar
Abdullah Rashwan committed
43
44
45

  def __init__(self,
               output_size,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
46
               train_on_crops=False,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
47
48
               resize_eval_groundtruth=True,
               groundtruth_padded_size=None,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
49
50
51
52
53
54
55
56
57
58
               ignore_label=255,
               aug_rand_hflip=False,
               aug_scale_min=1.0,
               aug_scale_max=1.0,
               dtype='float32'):
    """Initializes parameters for parsing annotations in the dataset.

    Args:
      output_size: `Tensor` or `list` for [height, width] of output image. The
        output_size should be divided by the largest feature stride 2^max_level.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
59
60
61
      train_on_crops: `bool`, if True, a training crop of size output_size
        is returned. This is useful for cropping original images during training
        while evaluating on original image sizes.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
62
63
64
65
66
      resize_eval_groundtruth: `bool`, if True, eval groundtruth masks are
        resized to output_size.
      groundtruth_padded_size: `Tensor` or `list` for [height, width]. When
        resize_eval_groundtruth is set to False, the groundtruth masks are
        padded to this size.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
67
68
69
70
71
72
73
74
75
76
77
      ignore_label: `int` the pixel with ignore label will not used for training
        and evaluation.
      aug_rand_hflip: `bool`, if True, augment training with random
        horizontal flip.
      aug_scale_min: `float`, the minimum scale applied to `output_size` for
        data augmentation during training.
      aug_scale_max: `float`, the maximum scale applied to `output_size` for
        data augmentation during training.
      dtype: `str`, data type. One of {`bfloat16`, `float32`, `float16`}.
    """
    self._output_size = output_size
Abdullah Rashwan's avatar
Abdullah Rashwan committed
78
    self._train_on_crops = train_on_crops
Abdullah Rashwan's avatar
Abdullah Rashwan committed
79
80
81
82
83
    self._resize_eval_groundtruth = resize_eval_groundtruth
    if (not resize_eval_groundtruth) and (groundtruth_padded_size is None):
      raise ValueError('groundtruth_padded_size ([height, width]) needs to be'
                       'specified when resize_eval_groundtruth is False.')
    self._groundtruth_padded_size = groundtruth_padded_size
Abdullah Rashwan's avatar
Abdullah Rashwan committed
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
    self._ignore_label = ignore_label

    # Data augmentation.
    self._aug_rand_hflip = aug_rand_hflip
    self._aug_scale_min = aug_scale_min
    self._aug_scale_max = aug_scale_max

    # dtype.
    self._dtype = dtype

  def _prepare_image_and_label(self, data):
    """Prepare normalized image and label."""
    image = tf.io.decode_image(data['image/encoded'], channels=3)
    label = tf.io.decode_image(data['image/segmentation/class/encoded'],
                               channels=1)
    height = data['image/height']
    width = data['image/width']
    image = tf.reshape(image, (height, width, 3))

    label = tf.reshape(label, (1, height, width))
    label = tf.cast(label, tf.float32)
    # Normalizes image with mean and std pixel values.
    image = preprocess_ops.normalize_image(image)
    return image, label

  def _parse_train_data(self, data):
    """Parses data for training and evaluation."""
    image, label = self._prepare_image_and_label(data)

Abdullah Rashwan's avatar
Abdullah Rashwan committed
113
114
115
116
117
118
119
120
    if self._train_on_crops:
      label = tf.reshape(label, [data['image/height'], data['image/width'], 1])
      image_mask = tf.concat([image, label], axis=2)
      image_mask_crop = tf.image.random_crop(image_mask,
                                             self._output_size + [4])
      image = image_mask_crop[:, :, :-1]
      label = tf.reshape(image_mask_crop[:, :, -1], [1] + self._output_size)

Abdullah Rashwan's avatar
Abdullah Rashwan committed
121
122
    # Flips image randomly during training.
    if self._aug_rand_hflip:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
123
124
      image, _, label = preprocess_ops.random_horizontal_flip(
          image, masks=label)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

    # Resizes and crops image.
    image, image_info = preprocess_ops.resize_and_crop_image(
        image,
        self._output_size,
        self._output_size,
        aug_scale_min=self._aug_scale_min,
        aug_scale_max=self._aug_scale_max)

    # Resizes and crops boxes.
    image_scale = image_info[2, :]
    offset = image_info[3, :]

    # Pad label and make sure the padded region assigned to the ignore label.
    # The label is first offset by +1 and then padded with 0.
    label += 1
    label = tf.expand_dims(label, axis=3)
    label = preprocess_ops.resize_and_crop_masks(
        label, image_scale, self._output_size, offset)
    label -= 1
    label = tf.where(tf.equal(label, -1),
                     self._ignore_label * tf.ones_like(label), label)
    label = tf.squeeze(label, axis=0)
    valid_mask = tf.not_equal(label, self._ignore_label)
    labels = {
        'masks': label,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
151
152
        'valid_masks': valid_mask,
        'image_info': image_info,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
153
154
155
156
157
158
159
160
161
162
163
164
165
166
    }

    # Cast image as self._dtype
    image = tf.cast(image, dtype=self._dtype)

    return image, labels

  def _parse_eval_data(self, data):
    """Parses data for training and evaluation."""
    image, label = self._prepare_image_and_label(data)
    # The label is first offset by +1 and then padded with 0.
    label += 1
    label = tf.expand_dims(label, axis=3)

Abdullah Rashwan's avatar
Abdullah Rashwan committed
167
168
169
    # Resizes and crops image.
    image, image_info = preprocess_ops.resize_and_crop_image(
        image, self._output_size, self._output_size)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
170

Abdullah Rashwan's avatar
Abdullah Rashwan committed
171
172
173
    if self._resize_eval_groundtruth:
      # Resizes eval masks to match input image sizes. In that case, mean IoU
      # is computed on output_size not the original size of the images.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
174
175
176
177
178
      image_scale = image_info[2, :]
      offset = image_info[3, :]
      label = preprocess_ops.resize_and_crop_masks(label, image_scale,
                                                   self._output_size, offset)
    else:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
179
180
181
      label = tf.image.pad_to_bounding_box(
          label, 0, 0, self._groundtruth_padded_size[0],
          self._groundtruth_padded_size[1])
Abdullah Rashwan's avatar
Abdullah Rashwan committed
182
183
184
185
186
187
188
189
190

    label -= 1
    label = tf.where(tf.equal(label, -1),
                     self._ignore_label * tf.ones_like(label), label)
    label = tf.squeeze(label, axis=0)

    valid_mask = tf.not_equal(label, self._ignore_label)
    labels = {
        'masks': label,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
191
192
        'valid_masks': valid_mask,
        'image_info': image_info
Abdullah Rashwan's avatar
Abdullah Rashwan committed
193
194
195
196
197
198
    }

    # Cast image as self._dtype
    image = tf.cast(image, dtype=self._dtype)

    return image, labels