train_ctl_continuous_finetune.py 6.29 KB
Newer Older
Le Hou's avatar
Le Hou committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""TFM continuous finetuning+eval training driver."""

import os
import time
Hongkun Yu's avatar
Hongkun Yu committed
20
from typing import Any, Mapping, Optional
Le Hou's avatar
Le Hou committed
21
22
23
24
25
26
27
28
29
30

from absl import app
from absl import flags
from absl import logging
import gin
import tensorflow as tf

# pylint: disable=unused-import
from official.common import registry_imports
# pylint: enable=unused-import
31
from official.common import distribute_utils
Le Hou's avatar
Le Hou committed
32
33
34
35
36
37
38
39
40
from official.common import flags as tfm_flags
from official.core import task_factory
from official.core import train_lib
from official.core import train_utils
from official.modeling import performance
from official.modeling.hyperparams import config_definitions

FLAGS = flags.FLAGS

Hongkun Yu's avatar
Hongkun Yu committed
41
42
43
44
45
flags.DEFINE_integer(
    'pretrain_steps',
    default=None,
    help='The number of total training steps for the pretraining job.')

Le Hou's avatar
Le Hou committed
46
47
48
49
50
51

def run_continuous_finetune(
    mode: str,
    params: config_definitions.ExperimentConfig,
    model_dir: str,
    run_post_eval: bool = False,
Hongkun Yu's avatar
Hongkun Yu committed
52
    pretrain_steps: Optional[int] = None,
Le Hou's avatar
Le Hou committed
53
54
55
56
57
58
) -> Mapping[str, Any]:
  """Run modes with continuous training.

  Currently only supports continuous_train_and_eval.

  Args:
Hongkun Yu's avatar
Hongkun Yu committed
59
60
61
62
    mode: A 'str', specifying the mode. continuous_train_and_eval - monitors a
      checkpoint directory. Once a new checkpoint is discovered, loads the
      checkpoint, finetune the model by training it (probably on another dataset
      or with another task), then evaluate the finetuned model.
Le Hou's avatar
Le Hou committed
63
64
65
66
    params: ExperimentConfig instance.
    model_dir: A 'str', a path to store model checkpoints and summaries.
    run_post_eval: Whether to run post eval once after training, metrics logs
      are returned.
Hongkun Yu's avatar
Hongkun Yu committed
67
68
    pretrain_steps: Optional, the number of total training steps for the
      pretraining job.
Le Hou's avatar
Le Hou committed
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

  Returns:
    eval logs: returns eval metrics logs when run_post_eval is set to True,
      othewise, returns {}.
  """

  assert mode == 'continuous_train_and_eval', (
      'Only continuous_train_and_eval is supported by continuous_finetune. '
      'Got mode: {}'.format(mode))

  # Sets mixed_precision policy. Using 'mixed_float16' or 'mixed_bfloat16'
  # can have significant impact on model speeds by utilizing float16 in case of
  # GPUs, and bfloat16 in the case of TPUs. loss_scale takes effect only when
  # dtype is float16
  if params.runtime.mixed_precision_dtype:
    performance.set_mixed_precision_policy(params.runtime.mixed_precision_dtype,
                                           params.runtime.loss_scale)
86
  distribution_strategy = distribute_utils.get_distribution_strategy(
Le Hou's avatar
Le Hou committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
      distribution_strategy=params.runtime.distribution_strategy,
      all_reduce_alg=params.runtime.all_reduce_alg,
      num_gpus=params.runtime.num_gpus,
      tpu_address=params.runtime.tpu)

  retry_times = 0
  while not tf.io.gfile.isdir(params.task.init_checkpoint):
    # Wait for the init_checkpoint directory to be created.
    if retry_times >= 60:
      raise ValueError(
          'ExperimentConfig.task.init_checkpoint must be a directory for '
          'continuous_train_and_eval mode.')
    retry_times += 1
    time.sleep(60)

  summary_writer = tf.summary.create_file_writer(
      os.path.join(model_dir, 'eval'))
  for pretrain_ckpt in tf.train.checkpoints_iterator(
      checkpoint_dir=params.task.init_checkpoint,
      min_interval_secs=10,
      timeout=params.trainer.continuous_eval_timeout):
    with distribution_strategy.scope():
      global_step = train_utils.read_global_step_from_checkpoint(pretrain_ckpt)

    if params.trainer.best_checkpoint_export_subdir:
      best_ckpt_subdir = '{}_{}'.format(
          params.trainer.best_checkpoint_export_subdir, global_step)
      params_replaced = params.replace(
          task={'init_checkpoint': pretrain_ckpt},
          trainer={'best_checkpoint_export_subdir': best_ckpt_subdir})
    else:
      params_replaced = params.replace(task={'init_checkpoint': pretrain_ckpt})
    params_replaced.lock()
    logging.info('Running finetuning with params: %s', params_replaced)

    with distribution_strategy.scope():
      task = task_factory.get_task(params_replaced.task, logging_dir=model_dir)

    _, eval_metrics = train_lib.run_experiment(
        distribution_strategy=distribution_strategy,
        task=task,
        mode='train_and_eval',
        # replace params.task.init_checkpoint to make sure that we load
        # exactly this pretrain checkpoint.
        params=params_replaced,
        model_dir=model_dir,
        run_post_eval=True,
        save_summary=False)
    logging.info('Evaluation finished. Pretrain global_step: %d', global_step)
    train_utils.write_json_summary(model_dir, global_step, eval_metrics)

    if not os.path.basename(model_dir):  # if model_dir.endswith('/')
      summary_grp = os.path.dirname(model_dir) + '_' + task.__class__.__name__
    else:
      summary_grp = os.path.basename(model_dir) + '_' + task.__class__.__name__
    summaries = {}
    for name, value in eval_metrics.items():
      summaries[summary_grp + '/' + name] = value
    train_utils.write_summary(summary_writer, global_step, summaries)

    train_utils.remove_ckpts(model_dir)

Hongkun Yu's avatar
Hongkun Yu committed
149
150
151
152
153
    if pretrain_steps and global_step.numpy() >= pretrain_steps:
      logging.info('The global_step reaches the pretraining end. Continuous '
                   'finetuning terminates.')
      break

Le Hou's avatar
Le Hou committed
154
155
156
157
158
159
160
161
162
163
  if run_post_eval:
    return eval_metrics
  return {}


def main(_):
  gin.parse_config_files_and_bindings(FLAGS.gin_file, FLAGS.gin_params)
  params = train_utils.parse_configuration(FLAGS)
  model_dir = FLAGS.model_dir
  train_utils.serialize_config(params, model_dir)
Hongkun Yu's avatar
Hongkun Yu committed
164
  run_continuous_finetune(FLAGS.mode, params, model_dir, FLAGS.pretrain_steps)
Le Hou's avatar
Le Hou committed
165
166
167
168
169


if __name__ == '__main__':
  tfm_flags.define_flags()
  app.run(main)