trainer.py 17.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Detection model trainer.

This file provides a generic training method that can be used to train a
DetectionModel.
"""

import functools

import tensorflow as tf

from object_detection.builders import optimizer_builder
from object_detection.builders import preprocessor_builder
from object_detection.core import batcher
from object_detection.core import preprocessor
from object_detection.core import standard_fields as fields
from object_detection.utils import ops as util_ops
from object_detection.utils import variables_helper
from deployment import model_deploy

slim = tf.contrib.slim


38
39
40
def create_input_queue(batch_size_per_clone, create_tensor_dict_fn,
                       batch_queue_capacity, num_batch_queue_threads,
                       prefetch_queue_capacity, data_augmentation_options):
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
  """Sets up reader, prefetcher and returns input queue.

  Args:
    batch_size_per_clone: batch size to use per clone.
    create_tensor_dict_fn: function to create tensor dictionary.
    batch_queue_capacity: maximum number of elements to store within a queue.
    num_batch_queue_threads: number of threads to use for batching.
    prefetch_queue_capacity: maximum capacity of the queue used to prefetch
                             assembled batches.
    data_augmentation_options: a list of tuples, where each tuple contains a
      data augmentation function and a dictionary containing arguments and their
      values (see preprocessor.py).

  Returns:
    input queue: a batcher.BatchQueue object holding enqueued tensor_dicts
      (which hold images, boxes and targets).  To get a batch of tensor_dicts,
      call input_queue.Dequeue().
  """
  tensor_dict = create_tensor_dict_fn()

  tensor_dict[fields.InputDataFields.image] = tf.expand_dims(
      tensor_dict[fields.InputDataFields.image], 0)

  images = tensor_dict[fields.InputDataFields.image]
  float_images = tf.to_float(images)
  tensor_dict[fields.InputDataFields.image] = float_images

68
69
70
71
  include_instance_masks = (fields.InputDataFields.groundtruth_instance_masks
                            in tensor_dict)
  include_keypoints = (fields.InputDataFields.groundtruth_keypoints
                       in tensor_dict)
72
73
  include_multiclass_scores = (fields.InputDataFields.multiclass_scores
                               in tensor_dict)
74
  if data_augmentation_options:
75
76
77
    tensor_dict = preprocessor.preprocess(
        tensor_dict, data_augmentation_options,
        func_arg_map=preprocessor.get_default_func_arg_map(
78
            include_multiclass_scores=include_multiclass_scores,
79
80
            include_instance_masks=include_instance_masks,
            include_keypoints=include_keypoints))
81
82
83
84
85
86
87
88
89
90

  input_queue = batcher.BatchQueue(
      tensor_dict,
      batch_size=batch_size_per_clone,
      batch_queue_capacity=batch_queue_capacity,
      num_batch_queue_threads=num_batch_queue_threads,
      prefetch_queue_capacity=prefetch_queue_capacity)
  return input_queue


91
92
93
94
def get_inputs(input_queue,
               num_classes,
               merge_multiple_label_boxes=False,
               use_multiclass_scores=False):
95
  """Dequeues batch and constructs inputs to object detection model.
96
97
98
99

  Args:
    input_queue: BatchQueue object holding enqueued tensor_dicts.
    num_classes: Number of classes.
100
101
102
103
    merge_multiple_label_boxes: Whether to merge boxes with multiple labels
      or not. Defaults to false. Merged boxes are represented with a single
      box and a k-hot encoding of the multiple labels associated with the
      boxes.
104
105
    use_multiclass_scores: Whether to use multiclass scores instead of
      groundtruth_classes.
106
107
108

  Returns:
    images: a list of 3-D float tensor of images.
109
    image_keys: a list of string keys for the images.
110
111
    locations_list: a list of tensors of shape [num_boxes, 4]
      containing the corners of the groundtruth boxes.
112
113
    classes_list: a list of padded one-hot (or K-hot) float32 tensors containing
      target classes.
114
115
116
    masks_list: a list of 3-D float tensors of shape [num_boxes, image_height,
      image_width] containing instance masks for objects if present in the
      input_queue. Else returns None.
117
118
119
    keypoints_list: a list of 3-D float tensors of shape [num_boxes,
      num_keypoints, 2] containing keypoints for objects if present in the
      input queue. Else returns None.
120
121
    weights_lists: a list of 1-D float32 tensors of shape [num_boxes]
      containing groundtruth weight for each box.
122
123
124
125
  """
  read_data_list = input_queue.dequeue()
  label_id_offset = 1
  def extract_images_and_targets(read_data):
126
    """Extract images and targets from the input dict."""
127
    image = read_data[fields.InputDataFields.image]
128
129
130
    key = ''
    if fields.InputDataFields.source_id in read_data:
      key = read_data[fields.InputDataFields.source_id]
131
132
133
134
    location_gt = read_data[fields.InputDataFields.groundtruth_boxes]
    classes_gt = tf.cast(read_data[fields.InputDataFields.groundtruth_classes],
                         tf.int32)
    classes_gt -= label_id_offset
135
136
137
138
139
140
141

    if merge_multiple_label_boxes and use_multiclass_scores:
      raise ValueError(
          'Using both merge_multiple_label_boxes and use_multiclass_scores is'
          'not supported'
      )

142
143
144
    if merge_multiple_label_boxes:
      location_gt, classes_gt, _ = util_ops.merge_boxes_with_multiple_labels(
          location_gt, classes_gt, num_classes)
145
      classes_gt = tf.cast(classes_gt, tf.float32)
146
147
148
    elif use_multiclass_scores:
      classes_gt = tf.cast(read_data[fields.InputDataFields.multiclass_scores],
                           tf.float32)
149
150
151
    else:
      classes_gt = util_ops.padded_one_hot_encoding(
          indices=classes_gt, depth=num_classes, left_pad=0)
152
    masks_gt = read_data.get(fields.InputDataFields.groundtruth_instance_masks)
153
154
155
156
    keypoints_gt = read_data.get(fields.InputDataFields.groundtruth_keypoints)
    if (merge_multiple_label_boxes and (
        masks_gt is not None or keypoints_gt is not None)):
      raise NotImplementedError('Multi-label support is only for boxes.')
157
158
159
160
    weights_gt = read_data.get(
        fields.InputDataFields.groundtruth_weights)
    return (image, key, location_gt, classes_gt, masks_gt, keypoints_gt,
            weights_gt)
161

162
163
164
  return zip(*map(extract_images_and_targets, read_data_list))


165
def _create_losses(input_queue, create_model_fn, train_config):
166
167
168
169
170
  """Creates loss function for a DetectionModel.

  Args:
    input_queue: BatchQueue object holding enqueued tensor_dicts.
    create_model_fn: A function to create the DetectionModel.
171
    train_config: a train_pb2.TrainConfig protobuf.
172
173
  """
  detection_model = create_model_fn()
174
  (images, _, groundtruth_boxes_list, groundtruth_classes_list,
175
   groundtruth_masks_list, groundtruth_keypoints_list, _) = get_inputs(
176
177
       input_queue,
       detection_model.num_classes,
178
179
       train_config.merge_multiple_label_boxes,
       train_config.use_multiclass_scores)
180
181
182
183
184
185
186
187
188
189
190

  preprocessed_images = []
  true_image_shapes = []
  for image in images:
    resized_image, true_image_shape = detection_model.preprocess(image)
    preprocessed_images.append(resized_image)
    true_image_shapes.append(true_image_shape)

  images = tf.concat(preprocessed_images, 0)
  true_image_shapes = tf.concat(true_image_shapes, 0)

191
192
  if any(mask is None for mask in groundtruth_masks_list):
    groundtruth_masks_list = None
193
194
  if any(keypoints is None for keypoints in groundtruth_keypoints_list):
    groundtruth_keypoints_list = None
195
196
197

  detection_model.provide_groundtruth(groundtruth_boxes_list,
                                      groundtruth_classes_list,
198
199
                                      groundtruth_masks_list,
                                      groundtruth_keypoints_list)
200
  prediction_dict = detection_model.predict(images, true_image_shapes)
201

202
  losses_dict = detection_model.loss(prediction_dict, true_image_shapes)
203
204
205
206
  for loss_tensor in losses_dict.values():
    tf.losses.add_loss(loss_tensor)


207
208
209
210
211
212
213
214
215
216
217
218
219
def train(create_tensor_dict_fn,
          create_model_fn,
          train_config,
          master,
          task,
          num_clones,
          worker_replicas,
          clone_on_cpu,
          ps_tasks,
          worker_job_name,
          is_chief,
          train_dir,
          graph_hook_fn=None):
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
  """Training function for detection models.

  Args:
    create_tensor_dict_fn: a function to create a tensor input dictionary.
    create_model_fn: a function that creates a DetectionModel and generates
                     losses.
    train_config: a train_pb2.TrainConfig protobuf.
    master: BNS name of the TensorFlow master to use.
    task: The task id of this training instance.
    num_clones: The number of clones to run per machine.
    worker_replicas: The number of work replicas to train with.
    clone_on_cpu: True if clones should be forced to run on CPU.
    ps_tasks: Number of parameter server tasks.
    worker_job_name: Name of the worker job.
    is_chief: Whether this replica is the chief replica.
    train_dir: Directory to write checkpoints and training summaries to.
236
237
238
239
    graph_hook_fn: Optional function that is called after the inference graph is
      built (before optimization). This is helpful to perform additional changes
      to the training graph such as adding FakeQuant ops. The function should
      modify the default graph.
240
241
242

  Raises:
    ValueError: If both num_clones > 1 and train_config.sync_replicas is true.
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
  """

  detection_model = create_model_fn()
  data_augmentation_options = [
      preprocessor_builder.build(step)
      for step in train_config.data_augmentation_options]

  with tf.Graph().as_default():
    # Build a configuration specifying multi-GPU and multi-replicas.
    deploy_config = model_deploy.DeploymentConfig(
        num_clones=num_clones,
        clone_on_cpu=clone_on_cpu,
        replica_id=task,
        num_replicas=worker_replicas,
        num_ps_tasks=ps_tasks,
        worker_job_name=worker_job_name)

    # Place the global step on the device storing the variables.
    with tf.device(deploy_config.variables_device()):
      global_step = slim.create_global_step()

264
265
266
267
268
269
270
    if num_clones != 1 and train_config.sync_replicas:
      raise ValueError('In Synchronous SGD mode num_clones must ',
                       'be 1. Found num_clones: {}'.format(num_clones))
    batch_size = train_config.batch_size // num_clones
    if train_config.sync_replicas:
      batch_size //= train_config.replicas_to_aggregate

271
    with tf.device(deploy_config.inputs_device()):
272
      input_queue = create_input_queue(
273
          batch_size, create_tensor_dict_fn,
274
275
276
          train_config.batch_queue_capacity,
          train_config.num_batch_queue_threads,
          train_config.prefetch_queue_capacity, data_augmentation_options)
277
278

    # Gather initial summaries.
279
    # TODO(rathodv): See if summaries can be added/extracted from global tf
280
    # collections so that they don't have to be passed around.
281
282
283
284
    summaries = set(tf.get_collection(tf.GraphKeys.SUMMARIES))
    global_summaries = set([])

    model_fn = functools.partial(_create_losses,
285
286
                                 create_model_fn=create_model_fn,
                                 train_config=train_config)
287
288
289
    clones = model_deploy.create_clones(deploy_config, model_fn, [input_queue])
    first_clone_scope = clones[0].scope

290
291
292
293
    if graph_hook_fn:
      with tf.device(deploy_config.variables_device()):
        graph_hook_fn()

294
295
296
297
298
    # Gather update_ops from the first clone. These contain, for example,
    # the updates for the batch_norm variables created by model_fn.
    update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, first_clone_scope)

    with tf.device(deploy_config.optimizer_device()):
299
300
301
      training_optimizer, optimizer_summary_vars = optimizer_builder.build(
          train_config.optimizer)
      for var in optimizer_summary_vars:
302
        tf.summary.scalar(var.op.name, var, family='LearningRate')
303
304
305

    sync_optimizer = None
    if train_config.sync_replicas:
306
      training_optimizer = tf.train.SyncReplicasOptimizer(
307
308
          training_optimizer,
          replicas_to_aggregate=train_config.replicas_to_aggregate,
309
          total_num_replicas=worker_replicas)
310
311
312
      sync_optimizer = training_optimizer

    with tf.device(deploy_config.optimizer_device()):
313
314
      regularization_losses = (None if train_config.add_regularization_loss
                               else [])
315
      total_loss, grads_and_vars = model_deploy.optimize_clones(
316
317
          clones, training_optimizer,
          regularization_losses=regularization_losses)
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
      total_loss = tf.check_numerics(total_loss, 'LossTensor is inf or nan.')

      # Optionally multiply bias gradients by train_config.bias_grad_multiplier.
      if train_config.bias_grad_multiplier:
        biases_regex_list = ['.*/biases']
        grads_and_vars = variables_helper.multiply_gradients_matching_regex(
            grads_and_vars,
            biases_regex_list,
            multiplier=train_config.bias_grad_multiplier)

      # Optionally freeze some layers by setting their gradients to be zero.
      if train_config.freeze_variables:
        grads_and_vars = variables_helper.freeze_gradients_matching_regex(
            grads_and_vars, train_config.freeze_variables)

      # Optionally clip gradients
      if train_config.gradient_clipping_by_norm > 0:
        with tf.name_scope('clip_grads'):
          grads_and_vars = slim.learning.clip_gradient_norms(
              grads_and_vars, train_config.gradient_clipping_by_norm)

      # Create gradient updates.
      grad_updates = training_optimizer.apply_gradients(grads_and_vars,
                                                        global_step=global_step)
      update_ops.append(grad_updates)
343
      update_op = tf.group(*update_ops, name='update_barrier')
344
345
346
347
348
      with tf.control_dependencies([update_op]):
        train_tensor = tf.identity(total_loss, name='train_op')

    # Add summaries.
    for model_var in slim.get_model_variables():
349
350
      global_summaries.add(tf.summary.histogram('ModelVars/' +
                                                model_var.op.name, model_var))
351
    for loss_tensor in tf.losses.get_losses():
352
353
      global_summaries.add(tf.summary.scalar('Losses/' + loss_tensor.op.name,
                                             loss_tensor))
354
    global_summaries.add(
355
        tf.summary.scalar('Losses/TotalLoss', tf.losses.get_total_loss()))
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374

    # Add the summaries from the first clone. These contain the summaries
    # created by model_fn and either optimize_clones() or _gather_clone_loss().
    summaries |= set(tf.get_collection(tf.GraphKeys.SUMMARIES,
                                       first_clone_scope))
    summaries |= global_summaries

    # Merge all summaries together.
    summary_op = tf.summary.merge(list(summaries), name='summary_op')

    # Soft placement allows placing on CPU ops without GPU implementation.
    session_config = tf.ConfigProto(allow_soft_placement=True,
                                    log_device_placement=False)

    # Save checkpoints regularly.
    keep_checkpoint_every_n_hours = train_config.keep_checkpoint_every_n_hours
    saver = tf.train.Saver(
        keep_checkpoint_every_n_hours=keep_checkpoint_every_n_hours)

375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
    # Create ops required to initialize the model from a given checkpoint.
    init_fn = None
    if train_config.fine_tune_checkpoint:
      if not train_config.fine_tune_checkpoint_type:
        # train_config.from_detection_checkpoint field is deprecated. For
        # backward compatibility, fine_tune_checkpoint_type is set based on
        # from_detection_checkpoint.
        if train_config.from_detection_checkpoint:
          train_config.fine_tune_checkpoint_type = 'detection'
        else:
          train_config.fine_tune_checkpoint_type = 'classification'
      var_map = detection_model.restore_map(
          fine_tune_checkpoint_type=train_config.fine_tune_checkpoint_type,
          load_all_detection_checkpoint_vars=(
              train_config.load_all_detection_checkpoint_vars))
      available_var_map = (variables_helper.
                           get_variables_available_in_checkpoint(
392
393
                               var_map, train_config.fine_tune_checkpoint,
                               include_global_step=False))
394
395
396
397
398
      init_saver = tf.train.Saver(available_var_map)
      def initializer_fn(sess):
        init_saver.restore(sess, train_config.fine_tune_checkpoint)
      init_fn = initializer_fn

399
400
401
402
403
404
405
406
407
408
409
410
411
412
    slim.learning.train(
        train_tensor,
        logdir=train_dir,
        master=master,
        is_chief=is_chief,
        session_config=session_config,
        startup_delay_steps=train_config.startup_delay_steps,
        init_fn=init_fn,
        summary_op=summary_op,
        number_of_steps=(
            train_config.num_steps if train_config.num_steps else None),
        save_summaries_secs=120,
        sync_optimizer=sync_optimizer,
        saver=saver)