simclr_head.py 7.49 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
15
"""SimCLR prediction heads."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
16

Abdullah Rashwan's avatar
Abdullah Rashwan committed
17
from typing import Optional, Text
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
18
19
20

import tensorflow as tf

Abdullah Rashwan's avatar
Abdullah Rashwan committed
21
from official.projects.simclr.modeling.layers import nn_blocks
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

regularizers = tf.keras.regularizers
layers = tf.keras.layers


class ProjectionHead(tf.keras.layers.Layer):
  """Projection head."""

  def __init__(
      self,
      num_proj_layers: int = 3,
      proj_output_dim: Optional[int] = None,
      ft_proj_idx: int = 0,
      kernel_initializer: Text = 'VarianceScaling',
      kernel_regularizer: Optional[regularizers.Regularizer] = None,
      bias_regularizer: Optional[regularizers.Regularizer] = None,
      use_sync_bn: bool = False,
      norm_momentum: float = 0.99,
      norm_epsilon: float = 0.001,
      **kwargs):
    """The projection head used during pretraining of SimCLR.

    Args:
      num_proj_layers: `int` number of Dense layers used.
      proj_output_dim: `int` output dimension of projection head, i.e., output
        dimension of the final layer.
      ft_proj_idx: `int` index of layer to use during fine-tuning. 0 means no
        projection head during fine tuning, -1 means the final layer.
      kernel_initializer: kernel_initializer for convolutional layers.
      kernel_regularizer: tf.keras.regularizers.Regularizer object for Conv2D.
        Default to None.
      bias_regularizer: tf.keras.regularizers.Regularizer object for Conv2d.
        Default to None.
      use_sync_bn: if True, use synchronized batch normalization.
      norm_momentum: `float` normalization omentum for the moving average.
      norm_epsilon: `float` small float added to variance to avoid dividing by
        zero.
      **kwargs: keyword arguments to be passed.
    """
    super(ProjectionHead, self).__init__(**kwargs)

    assert proj_output_dim is not None or num_proj_layers == 0
    assert ft_proj_idx <= num_proj_layers, (num_proj_layers, ft_proj_idx)

    self._proj_output_dim = proj_output_dim
    self._num_proj_layers = num_proj_layers
    self._ft_proj_idx = ft_proj_idx
    self._kernel_initializer = kernel_initializer
    self._kernel_regularizer = kernel_regularizer
    self._bias_regularizer = bias_regularizer
    self._use_sync_bn = use_sync_bn
    self._norm_momentum = norm_momentum
    self._norm_epsilon = norm_epsilon
    self._layers = []

  def get_config(self):
    config = {
        'proj_output_dim': self._proj_output_dim,
        'num_proj_layers': self._num_proj_layers,
        'ft_proj_idx': self._ft_proj_idx,
        'kernel_initializer': self._kernel_initializer,
        'kernel_regularizer': self._kernel_regularizer,
        'bias_regularizer': self._bias_regularizer,
        'norm_momentum': self._norm_momentum,
        'norm_epsilon': self._norm_epsilon
    }
    base_config = super(ProjectionHead, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))

  def build(self, input_shape):
    self._layers = []
    if self._num_proj_layers > 0:
      intermediate_dim = int(input_shape[-1])
      for j in range(self._num_proj_layers):
        if j != self._num_proj_layers - 1:
          # for the middle layers, use bias and relu for the output.
          layer = nn_blocks.DenseBN(
              output_dim=intermediate_dim,
              use_bias=True,
              use_normalization=True,
              activation='relu',
              kernel_initializer=self._kernel_initializer,
              kernel_regularizer=self._kernel_regularizer,
              bias_regularizer=self._bias_regularizer,
              use_sync_bn=self._use_sync_bn,
              norm_momentum=self._norm_momentum,
              norm_epsilon=self._norm_epsilon,
              name='nl_%d' % j)
        else:
          # for the final layer, neither bias nor relu is used.
          layer = nn_blocks.DenseBN(
              output_dim=self._proj_output_dim,
              use_bias=False,
              use_normalization=True,
              activation=None,
              kernel_regularizer=self._kernel_regularizer,
              kernel_initializer=self._kernel_initializer,
              use_sync_bn=self._use_sync_bn,
              norm_momentum=self._norm_momentum,
              norm_epsilon=self._norm_epsilon,
              name='nl_%d' % j)
        self._layers.append(layer)
    super(ProjectionHead, self).build(input_shape)

  def call(self, inputs, training=None):
    hiddens_list = [tf.identity(inputs, 'proj_head_input')]

    if self._num_proj_layers == 0:
      proj_head_output = inputs
      proj_finetune_output = inputs
    else:
      for j in range(self._num_proj_layers):
        hiddens = self._layers[j](hiddens_list[-1], training)
        hiddens_list.append(hiddens)
      proj_head_output = tf.identity(
          hiddens_list[-1], 'proj_head_output')
      proj_finetune_output = tf.identity(
          hiddens_list[self._ft_proj_idx], 'proj_finetune_output')

    # The first element is the output of the projection head.
    # The second element is the input of the finetune head.
    return proj_head_output, proj_finetune_output


class ClassificationHead(tf.keras.layers.Layer):
  """Classification Head."""

  def __init__(
      self,
      num_classes: int,
      kernel_initializer: Text = 'random_uniform',
      kernel_regularizer: Optional[regularizers.Regularizer] = None,
      bias_regularizer: Optional[regularizers.Regularizer] = None,
      name: Text = 'head_supervised',
      **kwargs):
    """The classification head used during pretraining or fine tuning.

    Args:
      num_classes: `int` size of the output dimension or number of classes
        for classification task.
      kernel_initializer: kernel_initializer for convolutional layers.
      kernel_regularizer: tf.keras.regularizers.Regularizer object for Conv2D.
        Default to None.
      bias_regularizer: tf.keras.regularizers.Regularizer object for Conv2d.
        Default to None.
      name: `str`, name of the layer.
      **kwargs: keyword arguments to be passed.
    """
    super(ClassificationHead, self).__init__(name=name, **kwargs)
    self._num_classes = num_classes
    self._kernel_initializer = kernel_initializer
    self._kernel_regularizer = kernel_regularizer
    self._bias_regularizer = bias_regularizer
    self._name = name

  def get_config(self):
    config = {
        'num_classes': self._num_classes,
        'kernel_initializer': self._kernel_initializer,
        'kernel_regularizer': self._kernel_regularizer,
        'bias_regularizer': self._bias_regularizer,
    }
    base_config = super(ClassificationHead, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))

  def build(self, input_shape):
    self._dense0 = layers.Dense(
        units=self._num_classes,
        kernel_initializer=self._kernel_initializer,
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer,
        activation=None)
    super(ClassificationHead, self).build(input_shape)

  def call(self, inputs, training=None):
    inputs = self._dense0(inputs)
    return inputs