preprocess_ops.py 12 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Preprocessing ops."""
import functools
import tensorflow as tf

CROP_PROPORTION = 0.875  # Standard for ImageNet.


def random_apply(func, p, x):
  """Randomly apply function func to x with probability p."""
  return tf.cond(
      tf.less(
          tf.random.uniform([], minval=0, maxval=1, dtype=tf.float32),
          tf.cast(p, tf.float32)), lambda: func(x), lambda: x)


def random_brightness(image, max_delta, impl='simclrv2'):
  """A multiplicative vs additive change of brightness."""
  if impl == 'simclrv2':
    factor = tf.random.uniform([], tf.maximum(1.0 - max_delta, 0),
                               1.0 + max_delta)
    image = image * factor
  elif impl == 'simclrv1':
    image = tf.image.random_brightness(image, max_delta=max_delta)
  else:
    raise ValueError('Unknown impl {} for random brightness.'.format(impl))
  return image


def to_grayscale(image, keep_channels=True):
  image = tf.image.rgb_to_grayscale(image)
  if keep_channels:
    image = tf.tile(image, [1, 1, 3])
  return image


def color_jitter_nonrand(image,
                         brightness=0,
                         contrast=0,
                         saturation=0,
                         hue=0,
                         impl='simclrv2'):
  """Distorts the color of the image (jittering order is fixed).

  Args:
    image: The input image tensor.
    brightness: A float, specifying the brightness for color jitter.
    contrast: A float, specifying the contrast for color jitter.
    saturation: A float, specifying the saturation for color jitter.
    hue: A float, specifying the hue for color jitter.
    impl: 'simclrv1' or 'simclrv2'.  Whether to use simclrv1 or simclrv2's
        version of random brightness.

  Returns:
    The distorted image tensor.
  """
  with tf.name_scope('distort_color'):
    def apply_transform(i, x, brightness, contrast, saturation, hue):
      """Apply the i-th transformation."""
      if brightness != 0 and i == 0:
        x = random_brightness(x, max_delta=brightness, impl=impl)
      elif contrast != 0 and i == 1:
        x = tf.image.random_contrast(
            x, lower=1 - contrast, upper=1 + contrast)
      elif saturation != 0 and i == 2:
        x = tf.image.random_saturation(
            x, lower=1 - saturation, upper=1 + saturation)
      elif hue != 0:
        x = tf.image.random_hue(x, max_delta=hue)
      return x

    for i in range(4):
      image = apply_transform(i, image, brightness, contrast, saturation, hue)
      image = tf.clip_by_value(image, 0., 1.)
    return image


def color_jitter_rand(image,
                      brightness=0,
                      contrast=0,
                      saturation=0,
                      hue=0,
                      impl='simclrv2'):
  """Distorts the color of the image (jittering order is random).

  Args:
    image: The input image tensor.
    brightness: A float, specifying the brightness for color jitter.
    contrast: A float, specifying the contrast for color jitter.
    saturation: A float, specifying the saturation for color jitter.
    hue: A float, specifying the hue for color jitter.
    impl: 'simclrv1' or 'simclrv2'.  Whether to use simclrv1 or simclrv2's
        version of random brightness.

  Returns:
    The distorted image tensor.
  """
  with tf.name_scope('distort_color'):
    def apply_transform(i, x):
      """Apply the i-th transformation."""

      def brightness_foo():
        if brightness == 0:
          return x
        else:
          return random_brightness(x, max_delta=brightness, impl=impl)

      def contrast_foo():
        if contrast == 0:
          return x
        else:
          return tf.image.random_contrast(x, lower=1 - contrast,
                                          upper=1 + contrast)

      def saturation_foo():
        if saturation == 0:
          return x
        else:
          return tf.image.random_saturation(
              x, lower=1 - saturation, upper=1 + saturation)

      def hue_foo():
        if hue == 0:
          return x
        else:
          return tf.image.random_hue(x, max_delta=hue)

      x = tf.cond(tf.less(i, 2),
                  lambda: tf.cond(tf.less(i, 1), brightness_foo, contrast_foo),
                  lambda: tf.cond(tf.less(i, 3), saturation_foo, hue_foo))
      return x

    perm = tf.random.shuffle(tf.range(4))
    for i in range(4):
      image = apply_transform(perm[i], image)
      image = tf.clip_by_value(image, 0., 1.)
    return image


def color_jitter(image, strength, random_order=True, impl='simclrv2'):
  """Distorts the color of the image.

  Args:
    image: The input image tensor.
    strength: the floating number for the strength of the color augmentation.
    random_order: A bool, specifying whether to randomize the jittering order.
    impl: 'simclrv1' or 'simclrv2'.  Whether to use simclrv1 or simclrv2's
        version of random brightness.

  Returns:
    The distorted image tensor.
  """
  brightness = 0.8 * strength
  contrast = 0.8 * strength
  saturation = 0.8 * strength
  hue = 0.2 * strength
  if random_order:
    return color_jitter_rand(
        image, brightness, contrast, saturation, hue, impl=impl)
  else:
    return color_jitter_nonrand(
        image, brightness, contrast, saturation, hue, impl=impl)


def random_color_jitter(image,
                        p=1.0,
                        color_jitter_strength=1.0,
                        impl='simclrv2'):
  """Perform random color jitter."""
  def _transform(image):
    color_jitter_t = functools.partial(
        color_jitter, strength=color_jitter_strength, impl=impl)
    image = random_apply(color_jitter_t, p=0.8, x=image)
    return random_apply(to_grayscale, p=0.2, x=image)

  return random_apply(_transform, p=p, x=image)


def gaussian_blur(image, kernel_size, sigma, padding='SAME'):
  """Blurs the given image with separable convolution.


  Args:
    image: Tensor of shape [height, width, channels] and dtype float to blur.
    kernel_size: Integer Tensor for the size of the blur kernel. This is should
      be an odd number. If it is an even number, the actual kernel size will be
      size + 1.
    sigma: Sigma value for gaussian operator.
    padding: Padding to use for the convolution. Typically 'SAME' or 'VALID'.

  Returns:
    A Tensor representing the blurred image.
  """
  radius = tf.cast(kernel_size / 2, dtype=tf.int32)
  kernel_size = radius * 2 + 1
  x = tf.cast(tf.range(-radius, radius + 1), dtype=tf.float32)
  blur_filter = tf.exp(-tf.pow(x, 2.0) /
                       (2.0 * tf.pow(tf.cast(sigma, dtype=tf.float32), 2.0)))
  blur_filter /= tf.reduce_sum(blur_filter)
  # One vertical and one horizontal filter.
  blur_v = tf.reshape(blur_filter, [kernel_size, 1, 1, 1])
  blur_h = tf.reshape(blur_filter, [1, kernel_size, 1, 1])
  num_channels = tf.shape(image)[-1]
  blur_h = tf.tile(blur_h, [1, 1, num_channels, 1])
  blur_v = tf.tile(blur_v, [1, 1, num_channels, 1])
  expand_batch_dim = image.shape.ndims == 3
  if expand_batch_dim:
    # Tensorflow requires batched input to convolutions, which we can fake with
    # an extra dimension.
    image = tf.expand_dims(image, axis=0)
  blurred = tf.nn.depthwise_conv2d(
      image, blur_h, strides=[1, 1, 1, 1], padding=padding)
  blurred = tf.nn.depthwise_conv2d(
      blurred, blur_v, strides=[1, 1, 1, 1], padding=padding)
  if expand_batch_dim:
    blurred = tf.squeeze(blurred, axis=0)
  return blurred


def random_blur(image, height, width, p=0.5):
  """Randomly blur an image.

  Args:
    image: `Tensor` representing an image of arbitrary size.
    height: Height of output image.
    width: Width of output image.
    p: probability of applying this transformation.

  Returns:
    A preprocessed image `Tensor`.
  """
  del width

  def _transform(image):
    sigma = tf.random.uniform([], 0.1, 2.0, dtype=tf.float32)
    return gaussian_blur(
        image, kernel_size=height // 10, sigma=sigma, padding='SAME')

  return random_apply(_transform, p=p, x=image)


def distorted_bounding_box_crop(image,
                                bbox,
                                min_object_covered=0.1,
                                aspect_ratio_range=(0.75, 1.33),
                                area_range=(0.05, 1.0),
                                max_attempts=100,
                                scope=None):
  """Generates cropped_image using one of the bboxes randomly distorted.

  See `tf.image.sample_distorted_bounding_box` for more documentation.

  Args:
    image: `Tensor` of image data.
    bbox: `Tensor` of bounding boxes arranged `[1, num_boxes, coords]`
        where each coordinate is [0, 1) and the coordinates are arranged
        as `[ymin, xmin, ymax, xmax]`. If num_boxes is 0 then use the whole
        image.
    min_object_covered: An optional `float`. Defaults to `0.1`. The cropped
        area of the image must contain at least this fraction of any bounding
        box supplied.
    aspect_ratio_range: An optional list of `float`s. The cropped area of the
        image must have an aspect ratio = width / height within this range.
    area_range: An optional list of `float`s. The cropped area of the image
        must contain a fraction of the supplied image within in this range.
    max_attempts: An optional `int`. Number of attempts at generating a cropped
        region of the image of the specified constraints. After `max_attempts`
        failures, return the entire image.
    scope: Optional `str` for name scope.
  Returns:
    (cropped image `Tensor`, distorted bbox `Tensor`).
  """
  with tf.name_scope(scope or 'distorted_bounding_box_crop'):
    shape = tf.shape(image)
    sample_distorted_bounding_box = tf.image.sample_distorted_bounding_box(
        shape,
        bounding_boxes=bbox,
        min_object_covered=min_object_covered,
        aspect_ratio_range=aspect_ratio_range,
        area_range=area_range,
        max_attempts=max_attempts,
        use_image_if_no_bounding_boxes=True)
    bbox_begin, bbox_size, _ = sample_distorted_bounding_box

    # Crop the image to the specified bounding box.
    offset_y, offset_x, _ = tf.unstack(bbox_begin)
    target_height, target_width, _ = tf.unstack(bbox_size)
    image = tf.image.crop_to_bounding_box(
        image, offset_y, offset_x, target_height, target_width)

    return image


def crop_and_resize(image, height, width):
  """Make a random crop and resize it to height `height` and width `width`.

  Args:
    image: Tensor representing the image.
    height: Desired image height.
    width: Desired image width.

  Returns:
    A `height` x `width` x channels Tensor holding a random crop of `image`.
  """
  bbox = tf.constant([0.0, 0.0, 1.0, 1.0], dtype=tf.float32, shape=[1, 1, 4])
  aspect_ratio = width / height
  image = distorted_bounding_box_crop(
      image,
      bbox,
      min_object_covered=0.1,
      aspect_ratio_range=(3. / 4 * aspect_ratio, 4. / 3. * aspect_ratio),
      area_range=(0.08, 1.0),
      max_attempts=100,
      scope=None)
  return tf.image.resize([image], [height, width],
                         method=tf.image.ResizeMethod.BICUBIC)[0]


def random_crop_with_resize(image, height, width, p=1.0):
  """Randomly crop and resize an image.

  Args:
    image: `Tensor` representing an image of arbitrary size.
    height: Height of output image.
    width: Width of output image.
    p: Probability of applying this transformation.

  Returns:
    A preprocessed image `Tensor`.
  """

  def _transform(image):  # pylint: disable=missing-docstring
    image = crop_and_resize(image, height, width)
    return image

  return random_apply(_transform, p=p, x=image)