swish_test.py 1.53 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Hongkun Yu's avatar
Hongkun Yu committed
14

15
"""Tests for the customized Swish activation."""
16
import numpy as np
17
18
19
import tensorflow as tf

from tensorflow.python.keras import keras_parameterized  # pylint: disable=g-direct-tensorflow-import
Hongkun Yu's avatar
Hongkun Yu committed
20
from official.modeling import activations
21
22
23
24
25


@keras_parameterized.run_all_keras_modes
class CustomizedSwishTest(keras_parameterized.TestCase):

26
27
28
29
30
31
32
33
34
35
36
37
38
39
  def _hard_swish_np(self, x):
    x = np.float32(x)
    return x * np.clip(x + 3, 0, 6) / 6

  def test_simple_swish(self):
    features = [[.25, 0, -.25], [-1, -2, 3]]
    customized_swish_data = activations.simple_swish(features)
    swish_data = tf.nn.swish(features)
    self.assertAllClose(customized_swish_data, swish_data)

  def test_hard_swish(self):
    features = [[.25, 0, -.25], [-1, -2, 3]]
    customized_swish_data = activations.hard_swish(features)
    swish_data = self._hard_swish_np(features)
40
41
42
43
44
    self.assertAllClose(customized_swish_data, swish_data)


if __name__ == '__main__':
  tf.test.main()