model_lib_v2.py 44.3 KB
Newer Older
pkulzc's avatar
pkulzc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
r"""Constructs model, inputs, and training environment."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import copy
22
import os
pkulzc's avatar
pkulzc committed
23
import time
Pankaj Kanwar's avatar
Pankaj Kanwar committed
24
import numpy as np
pkulzc's avatar
pkulzc committed
25

26
import tensorflow.compat.v1 as tf
27
import tensorflow.compat.v2 as tf2
pkulzc's avatar
pkulzc committed
28
29
30
31
32
33

from object_detection import eval_util
from object_detection import inputs
from object_detection import model_lib
from object_detection.builders import optimizer_builder
from object_detection.core import standard_fields as fields
34
from object_detection.protos import train_pb2
pkulzc's avatar
pkulzc committed
35
36
37
from object_detection.utils import config_util
from object_detection.utils import label_map_util
from object_detection.utils import ops
38
39
from object_detection.utils import visualization_utils as vutils

pkulzc's avatar
pkulzc committed
40
41
42
43

MODEL_BUILD_UTIL_MAP = model_lib.MODEL_BUILD_UTIL_MAP


44
45
46
47
48
49
RESTORE_MAP_ERROR_TEMPLATE = (
    'Since we are restoring a v2 style checkpoint'
    ' restore_map was expected to return a (str -> Model) mapping,'
    ' but we received a ({} -> {}) mapping instead.'
)

pkulzc's avatar
pkulzc committed
50
51
52

def _compute_losses_and_predictions_dicts(
    model, features, labels,
53
    add_regularization_loss=True):
pkulzc's avatar
pkulzc committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
  """Computes the losses dict and predictions dict for a model on inputs.

  Args:
    model: a DetectionModel (based on Keras).
    features: Dictionary of feature tensors from the input dataset.
      Should be in the format output by `inputs.train_input` and
      `inputs.eval_input`.
        features[fields.InputDataFields.image] is a [batch_size, H, W, C]
          float32 tensor with preprocessed images.
        features[HASH_KEY] is a [batch_size] int32 tensor representing unique
          identifiers for the images.
        features[fields.InputDataFields.true_image_shape] is a [batch_size, 3]
          int32 tensor representing the true image shapes, as preprocessed
          images could be padded.
        features[fields.InputDataFields.original_image] (optional) is a
          [batch_size, H, W, C] float32 tensor with original images.
    labels: A dictionary of groundtruth tensors post-unstacking. The original
      labels are of the form returned by `inputs.train_input` and
      `inputs.eval_input`. The shapes may have been modified by unstacking with
      `model_lib.unstack_batch`. However, the dictionary includes the following
      fields.
        labels[fields.InputDataFields.num_groundtruth_boxes] is a
          int32 tensor indicating the number of valid groundtruth boxes
          per image.
        labels[fields.InputDataFields.groundtruth_boxes] is a float32 tensor
          containing the corners of the groundtruth boxes.
        labels[fields.InputDataFields.groundtruth_classes] is a float32
          one-hot tensor of classes.
        labels[fields.InputDataFields.groundtruth_weights] is a float32 tensor
          containing groundtruth weights for the boxes.
        -- Optional --
        labels[fields.InputDataFields.groundtruth_instance_masks] is a
          float32 tensor containing only binary values, which represent
          instance masks for objects.
        labels[fields.InputDataFields.groundtruth_keypoints] is a
          float32 tensor containing keypoints for each box.
90
91
92
93
94
95
        labels[fields.InputDataFields.groundtruth_dp_num_points] is an int32
          tensor with the number of sampled DensePose points per object.
        labels[fields.InputDataFields.groundtruth_dp_part_ids] is an int32
          tensor with the DensePose part ids (0-indexed) per object.
        labels[fields.InputDataFields.groundtruth_dp_surface_coords] is a
          float32 tensor with the DensePose surface coordinates.
96
97
98
99
        labels[fields.InputDataFields.groundtruth_group_of] is a tf.bool tensor
          containing group_of annotations.
        labels[fields.InputDataFields.groundtruth_labeled_classes] is a float32
          k-hot tensor of classes.
100
101
        labels[fields.InputDataFields.groundtruth_track_ids] is a int32
          tensor of track IDs.
pkulzc's avatar
pkulzc committed
102
103
104
105
106
107
108
109
110
111
112
113
    add_regularization_loss: Whether or not to include the model's
      regularization loss in the losses dictionary.

  Returns:
    A tuple containing the losses dictionary (with the total loss under
    the key 'Loss/total_loss'), and the predictions dictionary produced by
    `model.predict`.

  """
  model_lib.provide_groundtruth(model, labels)
  preprocessed_images = features[fields.InputDataFields.image]

114
115
  prediction_dict = model.predict(
      preprocessed_images,
Kaushik Shivakumar's avatar
Kaushik Shivakumar committed
116
117
      features[fields.InputDataFields.true_image_shape],
      **model.get_side_inputs(features))
118
  prediction_dict = ops.bfloat16_to_float32_nested(prediction_dict)
pkulzc's avatar
pkulzc committed
119
120
121
122
123
124
125
126
127
128

  losses_dict = model.loss(
      prediction_dict, features[fields.InputDataFields.true_image_shape])
  losses = [loss_tensor for loss_tensor in losses_dict.values()]
  if add_regularization_loss:
    # TODO(kaftan): As we figure out mixed precision & bfloat 16, we may
    ## need to convert these regularization losses from bfloat16 to float32
    ## as well.
    regularization_losses = model.regularization_losses()
    if regularization_losses:
129
130
      regularization_losses = ops.bfloat16_to_float32_nested(
          regularization_losses)
pkulzc's avatar
pkulzc committed
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
      regularization_loss = tf.add_n(
          regularization_losses, name='regularization_loss')
      losses.append(regularization_loss)
      losses_dict['Loss/regularization_loss'] = regularization_loss

  total_loss = tf.add_n(losses, name='total_loss')
  losses_dict['Loss/total_loss'] = total_loss

  return losses_dict, prediction_dict


# TODO(kaftan): Explore removing learning_rate from this method & returning
## The full losses dict instead of just total_loss, then doing all summaries
## saving in a utility method called by the outer training loop.
# TODO(kaftan): Explore adding gradient summaries
def eager_train_step(detection_model,
                     features,
                     labels,
                     unpad_groundtruth_tensors,
                     optimizer,
                     learning_rate,
                     add_regularization_loss=True,
                     clip_gradients_value=None,
                     global_step=None,
                     num_replicas=1.0):
  """Process a single training batch.

  This method computes the loss for the model on a single training batch,
  while tracking the gradients with a gradient tape. It then updates the
  model variables with the optimizer, clipping the gradients if
  clip_gradients_value is present.

  This method can run eagerly or inside a tf.function.

  Args:
    detection_model: A DetectionModel (based on Keras) to train.
    features: Dictionary of feature tensors from the input dataset.
      Should be in the format output by `inputs.train_input.
        features[fields.InputDataFields.image] is a [batch_size, H, W, C]
          float32 tensor with preprocessed images.
        features[HASH_KEY] is a [batch_size] int32 tensor representing unique
          identifiers for the images.
        features[fields.InputDataFields.true_image_shape] is a [batch_size, 3]
          int32 tensor representing the true image shapes, as preprocessed
          images could be padded.
        features[fields.InputDataFields.original_image] (optional, not used
          during training) is a
          [batch_size, H, W, C] float32 tensor with original images.
    labels: A dictionary of groundtruth tensors. This method unstacks
      these labels using model_lib.unstack_batch. The stacked labels are of
      the form returned by `inputs.train_input` and `inputs.eval_input`.
        labels[fields.InputDataFields.num_groundtruth_boxes] is a [batch_size]
          int32 tensor indicating the number of valid groundtruth boxes
          per image.
        labels[fields.InputDataFields.groundtruth_boxes] is a
          [batch_size, num_boxes, 4] float32 tensor containing the corners of
          the groundtruth boxes.
        labels[fields.InputDataFields.groundtruth_classes] is a
          [batch_size, num_boxes, num_classes] float32 one-hot tensor of
          classes. num_classes includes the background class.
        labels[fields.InputDataFields.groundtruth_weights] is a
          [batch_size, num_boxes] float32 tensor containing groundtruth weights
          for the boxes.
        -- Optional --
        labels[fields.InputDataFields.groundtruth_instance_masks] is a
          [batch_size, num_boxes, H, W] float32 tensor containing only binary
          values, which represent instance masks for objects.
        labels[fields.InputDataFields.groundtruth_keypoints] is a
          [batch_size, num_boxes, num_keypoints, 2] float32 tensor containing
          keypoints for each box.
201
202
203
204
205
206
207
208
209
210
211
        labels[fields.InputDataFields.groundtruth_dp_num_points] is a
          [batch_size, num_boxes] int32 tensor with the number of DensePose
          sampled points per instance.
        labels[fields.InputDataFields.groundtruth_dp_part_ids] is a
          [batch_size, num_boxes, max_sampled_points] int32 tensor with the
          part ids (0-indexed) for each instance.
        labels[fields.InputDataFields.groundtruth_dp_surface_coords] is a
          [batch_size, num_boxes, max_sampled_points, 4] float32 tensor with the
          surface coordinates for each point. Each surface coordinate is of the
          form (y, x, v, u) where (y, x) are normalized image locations and
          (v, u) are part-relative normalized surface coordinates.
212
213
        labels[fields.InputDataFields.groundtruth_labeled_classes] is a float32
          k-hot tensor of classes.
214
215
        labels[fields.InputDataFields.groundtruth_track_ids] is a int32
          tensor of track IDs.
pkulzc's avatar
pkulzc committed
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
    unpad_groundtruth_tensors: A parameter passed to unstack_batch.
    optimizer: The training optimizer that will update the variables.
    learning_rate: The learning rate tensor for the current training step.
      This is used only for TensorBoard logging purposes, it does not affect
       model training.
    add_regularization_loss: Whether or not to include the model's
      regularization loss in the losses dictionary.
    clip_gradients_value: If this is present, clip the gradients global norm
      at this value using `tf.clip_by_global_norm`.
    global_step: The current training step. Used for TensorBoard logging
      purposes. This step is not updated by this function and must be
      incremented separately.
    num_replicas: The number of replicas in the current distribution strategy.
      This is used to scale the total loss so that training in a distribution
      strategy works correctly.

  Returns:
    The total loss observed at this training step
  """
  # """Execute a single training step in the TF v2 style loop."""
  is_training = True

  detection_model._is_training = is_training  # pylint: disable=protected-access
  tf.keras.backend.set_learning_phase(is_training)

  labels = model_lib.unstack_batch(
      labels, unpad_groundtruth_tensors=unpad_groundtruth_tensors)

  with tf.GradientTape() as tape:
    losses_dict, _ = _compute_losses_and_predictions_dicts(
246
        detection_model, features, labels, add_regularization_loss)
pkulzc's avatar
pkulzc committed
247
248
249
250
251
252
253
254

    total_loss = losses_dict['Loss/total_loss']

    # Normalize loss for num replicas
    total_loss = tf.math.divide(total_loss,
                                tf.constant(num_replicas, dtype=tf.float32))
    losses_dict['Loss/normalized_total_loss'] = total_loss

255
256
257
  for loss_type in losses_dict:
    tf.compat.v2.summary.scalar(
        loss_type, losses_dict[loss_type], step=global_step)
pkulzc's avatar
pkulzc committed
258
259
260
261
262
263
264
265

  trainable_variables = detection_model.trainable_variables

  gradients = tape.gradient(total_loss, trainable_variables)

  if clip_gradients_value:
    gradients, _ = tf.clip_by_global_norm(gradients, clip_gradients_value)
  optimizer.apply_gradients(zip(gradients, trainable_variables))
266
  tf.compat.v2.summary.scalar('learning_rate', learning_rate, step=global_step)
267
268
269
270
271
  tf.compat.v2.summary.image(
      name='train_input_images',
      step=global_step,
      data=features[fields.InputDataFields.image],
      max_outputs=3)
pkulzc's avatar
pkulzc committed
272
273
274
  return total_loss


275
276
277
278
def validate_tf_v2_checkpoint_restore_map(checkpoint_restore_map):
  """Ensure that given dict is a valid TF v2 style restore map.

  Args:
279
280
    checkpoint_restore_map: A nested dict mapping strings to
      tf.keras.Model objects.
281
282
283
284
285
286
287
288

  Raises:
    ValueError: If they keys in checkpoint_restore_map are not strings or if
      the values are not keras Model objects.

  """

  for key, value in checkpoint_restore_map.items():
289
290
291
    if not (isinstance(key, str) and
            (isinstance(value, tf.Module)
             or isinstance(value, tf.train.Checkpoint))):
292
293
294
295
296
297
      if isinstance(key, str) and isinstance(value, dict):
        validate_tf_v2_checkpoint_restore_map(value)
      else:
        raise TypeError(
            RESTORE_MAP_ERROR_TEMPLATE.format(key.__class__.__name__,
                                              value.__class__.__name__))
298
299


300
301
302
303
304
305
def is_object_based_checkpoint(checkpoint_path):
  """Returns true if `checkpoint_path` points to an object-based checkpoint."""
  var_names = [var[0] for var in tf.train.list_variables(checkpoint_path)]
  return '_CHECKPOINTABLE_OBJECT_GRAPH' in var_names


pkulzc's avatar
pkulzc committed
306
def load_fine_tune_checkpoint(
307
    model, checkpoint_path, checkpoint_type, checkpoint_version, input_dataset,
308
    unpad_groundtruth_tensors):
pkulzc's avatar
pkulzc committed
309
310
311
312
313
314
  """Load a fine tuning classification or detection checkpoint.

  To make sure the model variables are all built, this method first executes
  the model by computing a dummy loss. (Models might not have built their
  variables before their first execution)

315
  It then loads an object-based classification or detection checkpoint.
pkulzc's avatar
pkulzc committed
316
317
318
319
320
321
322
323
324
325
326

  This method updates the model in-place and does not return a value.

  Args:
    model: A DetectionModel (based on Keras) to load a fine-tuning
      checkpoint for.
    checkpoint_path: Directory with checkpoints file or path to checkpoint.
    checkpoint_type: Whether to restore from a full detection
      checkpoint (with compatible variable names) or to restore from a
      classification checkpoint for initialization prior to training.
      Valid values: `detection`, `classification`.
327
    checkpoint_version: train_pb2.CheckpointVersion.V1 or V2 enum indicating
328
329
      whether to load checkpoints in V1 style or V2 style.  In this binary
      we only support V2 style (object-based) checkpoints.
pkulzc's avatar
pkulzc committed
330
331
332
    input_dataset: The tf.data Dataset the model is being trained on. Needed
      to get the shapes for the dummy loss computation.
    unpad_groundtruth_tensors: A parameter passed to unstack_batch.
333
334
335
336
337

  Raises:
    IOError: if `checkpoint_path` does not point at a valid object-based
      checkpoint
    ValueError: if `checkpoint_version` is not train_pb2.CheckpointVersion.V2
pkulzc's avatar
pkulzc committed
338
  """
339
340
341
342
343
  if not is_object_based_checkpoint(checkpoint_path):
    raise IOError('Checkpoint is expected to be an object-based checkpoint.')
  if checkpoint_version == train_pb2.CheckpointVersion.V1:
    raise ValueError('Checkpoint version should be V2')

pkulzc's avatar
pkulzc committed
344
345
  features, labels = iter(input_dataset).next()

346
  @tf.function
pkulzc's avatar
pkulzc committed
347
348
349
350
351
352
353
354
355
356
  def _dummy_computation_fn(features, labels):
    model._is_training = False  # pylint: disable=protected-access
    tf.keras.backend.set_learning_phase(False)

    labels = model_lib.unstack_batch(
        labels, unpad_groundtruth_tensors=unpad_groundtruth_tensors)

    return _compute_losses_and_predictions_dicts(
        model,
        features,
357
        labels)
pkulzc's avatar
pkulzc committed
358
359

  strategy = tf.compat.v2.distribute.get_strategy()
360
361
362
363
364
365
366
367
368
369
370
371
  if hasattr(tf.distribute.Strategy, 'run'):
    strategy.run(
        _dummy_computation_fn, args=(
            features,
            labels,
        ))
  else:
    strategy.experimental_run_v2(
        _dummy_computation_fn, args=(
            features,
            labels,
        ))
372

373
374
375
376
377
  restore_from_objects_dict = model.restore_from_objects(
      fine_tune_checkpoint_type=checkpoint_type)
  validate_tf_v2_checkpoint_restore_map(restore_from_objects_dict)
  ckpt = tf.train.Checkpoint(**restore_from_objects_dict)
  ckpt.restore(checkpoint_path).assert_existing_objects_matched()
378
379


380
def get_filepath(strategy, filepath):
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
  """Get appropriate filepath for worker.

  Args:
    strategy: A tf.distribute.Strategy object.
    filepath: A path to where the Checkpoint object is stored.

  Returns:
    A temporary filepath for non-chief workers to use or the original filepath
    for the chief.
  """
  if strategy.extended.should_checkpoint:
    return filepath
  else:
    # TODO(vighneshb) Replace with the public API when TF exposes it.
    task_id = strategy.extended._task_id  # pylint:disable=protected-access
    return os.path.join(filepath, 'temp_worker_{:03d}'.format(task_id))


399
def clean_temporary_directories(strategy, filepath):
400
401
402
403
404
405
406
407
408
409
410
  """Temporary directory clean up for MultiWorker Mirrored Strategy.

  This is needed for all non-chief workers.

  Args:
    strategy: A tf.distribute.Strategy object.
    filepath: The filepath for the temporary directory.
  """
  if not strategy.extended.should_checkpoint:
    if tf.io.gfile.exists(filepath) and tf.io.gfile.isdir(filepath):
      tf.io.gfile.rmtree(filepath)
pkulzc's avatar
pkulzc committed
411
412
413
414
415
416
417
418
419


def train_loop(
    pipeline_config_path,
    model_dir,
    config_override=None,
    train_steps=None,
    use_tpu=False,
    save_final_config=False,
420
    checkpoint_every_n=1000,
421
    checkpoint_max_to_keep=7,
422
    record_summaries=True,
Pankaj Kanwar's avatar
Pankaj Kanwar committed
423
    performance_summary_exporter=None,
424
    **kwargs):
pkulzc's avatar
pkulzc committed
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
  """Trains a model using eager + functions.

  This method:
    1. Processes the pipeline configs
    2. (Optionally) saves the as-run config
    3. Builds the model & optimizer
    4. Gets the training input data
    5. Loads a fine-tuning detection or classification checkpoint if requested
    6. Loops over the train data, executing distributed training steps inside
       tf.functions.
    7. Checkpoints the model every `checkpoint_every_n` training steps.
    8. Logs the training metrics as TensorBoard summaries.

  Args:
    pipeline_config_path: A path to a pipeline config file.
    model_dir:
      The directory to save checkpoints and summaries to.
    config_override: A pipeline_pb2.TrainEvalPipelineConfig text proto to
      override the config from `pipeline_config_path`.
    train_steps: Number of training steps. If None, the number of training steps
      is set from the `TrainConfig` proto.
    use_tpu: Boolean, whether training and evaluation should run on TPU.
    save_final_config: Whether to save final config (obtained after applying
      overrides) to `model_dir`.
    checkpoint_every_n:
      Checkpoint every n training steps.
451
452
    checkpoint_max_to_keep:
      int, the number of most recent checkpoints to keep in the model directory.
453
    record_summaries: Boolean, whether or not to record summaries.
Pankaj Kanwar's avatar
Pankaj Kanwar committed
454
    performance_summary_exporter: function for exporting performance metrics.
pkulzc's avatar
pkulzc committed
455
456
457
458
459
460
461
462
463
    **kwargs: Additional keyword arguments for configuration override.
  """
  ## Parse the configs
  get_configs_from_pipeline_file = MODEL_BUILD_UTIL_MAP[
      'get_configs_from_pipeline_file']
  merge_external_params_with_configs = MODEL_BUILD_UTIL_MAP[
      'merge_external_params_with_configs']
  create_pipeline_proto_from_configs = MODEL_BUILD_UTIL_MAP[
      'create_pipeline_proto_from_configs']
Pankaj Kanwar's avatar
Pankaj Kanwar committed
464
  steps_per_sec_list = []
pkulzc's avatar
pkulzc committed
465
466
467
468
469
470
471
472

  configs = get_configs_from_pipeline_file(
      pipeline_config_path, config_override=config_override)
  kwargs.update({
      'train_steps': train_steps,
      'use_bfloat16': configs['train_config'].use_bfloat16 and use_tpu
  })
  configs = merge_external_params_with_configs(
473
      configs, None, kwargs_dict=kwargs)
pkulzc's avatar
pkulzc committed
474
475
476
477
478
479
480
481
482
483
484
485
486
487
  model_config = configs['model']
  train_config = configs['train_config']
  train_input_config = configs['train_input_config']

  unpad_groundtruth_tensors = train_config.unpad_groundtruth_tensors
  add_regularization_loss = train_config.add_regularization_loss
  clip_gradients_value = None
  if train_config.gradient_clipping_by_norm > 0:
    clip_gradients_value = train_config.gradient_clipping_by_norm

  # update train_steps from config but only when non-zero value is provided
  if train_steps is None and train_config.num_steps != 0:
    train_steps = train_config.num_steps

488
489
490
  if kwargs['use_bfloat16']:
    tf.compat.v2.keras.mixed_precision.experimental.set_policy('mixed_bfloat16')

491
492
493
494
  if train_config.load_all_detection_checkpoint_vars:
    raise ValueError('train_pb2.load_all_detection_checkpoint_vars '
                     'unsupported in TF2')

495
  config_util.update_fine_tune_checkpoint_type(train_config)
pkulzc's avatar
pkulzc committed
496
  fine_tune_checkpoint_type = train_config.fine_tune_checkpoint_type
497
  fine_tune_checkpoint_version = train_config.fine_tune_checkpoint_version
pkulzc's avatar
pkulzc committed
498
499
500
501
502
503
504

  # Write the as-run pipeline config to disk.
  if save_final_config:
    pipeline_config_final = create_pipeline_proto_from_configs(configs)
    config_util.save_pipeline_config(pipeline_config_final, model_dir)

  # Build the model, optimizer, and training input
505
  strategy = tf.compat.v2.distribute.get_strategy()
pkulzc's avatar
pkulzc committed
506
  with strategy.scope():
507
    detection_model = MODEL_BUILD_UTIL_MAP['detection_model_fn_base'](
pkulzc's avatar
pkulzc committed
508
509
        model_config=model_config, is_training=True)

510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
    def train_dataset_fn(input_context):
      """Callable to create train input."""
      # Create the inputs.
      train_input = inputs.train_input(
          train_config=train_config,
          train_input_config=train_input_config,
          model_config=model_config,
          model=detection_model,
          input_context=input_context)
      train_input = train_input.repeat()
      return train_input

    train_input = strategy.experimental_distribute_datasets_from_function(
        train_dataset_fn)


    global_step = tf.Variable(
        0, trainable=False, dtype=tf.compat.v2.dtypes.int64, name='global_step',
        aggregation=tf.compat.v2.VariableAggregation.ONLY_FIRST_REPLICA)
pkulzc's avatar
pkulzc committed
529
530
531
532
533
534
535
536
537
    optimizer, (learning_rate,) = optimizer_builder.build(
        train_config.optimizer, global_step=global_step)

    if callable(learning_rate):
      learning_rate_fn = learning_rate
    else:
      learning_rate_fn = lambda: learning_rate

  ## Train the model
538
539
  # Get the appropriate filepath (temporary or not) based on whether the worker
  # is the chief.
540
541
  summary_writer_filepath = get_filepath(strategy,
                                         os.path.join(model_dir, 'train'))
542
543
544
545
546
  if record_summaries:
    summary_writer = tf.compat.v2.summary.create_file_writer(
        summary_writer_filepath)
  else:
    summary_writer = tf2.summary.create_noop_writer()
547
548
549
550
551
552
553
554

  if use_tpu:
    num_steps_per_iteration = 100
  else:
    # TODO(b/135933080) Explore setting to 100 when GPU performance issues
    # are fixed.
    num_steps_per_iteration = 1

pkulzc's avatar
pkulzc committed
555
556
  with summary_writer.as_default():
    with strategy.scope():
557
558
559
      with tf.compat.v2.summary.record_if(
          lambda: global_step % num_steps_per_iteration == 0):
        # Load a fine-tuning checkpoint.
560
561
562
        if train_config.fine_tune_checkpoint:
          load_fine_tune_checkpoint(detection_model,
                                    train_config.fine_tune_checkpoint,
563
564
565
566
567
568
569
570
                                    fine_tune_checkpoint_type,
                                    fine_tune_checkpoint_version,
                                    train_input,
                                    unpad_groundtruth_tensors)

        ckpt = tf.compat.v2.train.Checkpoint(
            step=global_step, model=detection_model, optimizer=optimizer)

571
        manager_dir = get_filepath(strategy, model_dir)
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
        if not strategy.extended.should_checkpoint:
          checkpoint_max_to_keep = 1
        manager = tf.compat.v2.train.CheckpointManager(
            ckpt, manager_dir, max_to_keep=checkpoint_max_to_keep)

        # We use the following instead of manager.latest_checkpoint because
        # manager_dir does not point to the model directory when we are running
        # in a worker.
        latest_checkpoint = tf.train.latest_checkpoint(model_dir)
        ckpt.restore(latest_checkpoint)

        def train_step_fn(features, labels):
          """Single train step."""
          loss = eager_train_step(
              detection_model,
              features,
              labels,
              unpad_groundtruth_tensors,
              optimizer,
              learning_rate=learning_rate_fn(),
              add_regularization_loss=add_regularization_loss,
              clip_gradients_value=clip_gradients_value,
              global_step=global_step,
              num_replicas=strategy.num_replicas_in_sync)
          global_step.assign_add(1)
          return loss

        def _sample_and_train(strategy, train_step_fn, data_iterator):
          features, labels = data_iterator.next()
601
602
603
604
605
606
          if hasattr(tf.distribute.Strategy, 'run'):
            per_replica_losses = strategy.run(
                train_step_fn, args=(features, labels))
          else:
            per_replica_losses = strategy.experimental_run_v2(
                train_step_fn, args=(features, labels))
607
608
609
610
611
612
613
614
615
616
617
          # TODO(anjalisridhar): explore if it is safe to remove the
          ## num_replicas scaling of the loss and switch this to a ReduceOp.Mean
          return strategy.reduce(tf.distribute.ReduceOp.SUM,
                                 per_replica_losses, axis=None)

        @tf.function
        def _dist_train_step(data_iterator):
          """A distributed train step."""

          if num_steps_per_iteration > 1:
            for _ in tf.range(num_steps_per_iteration - 1):
618
619
620
              # Following suggestion on yaqs/5402607292645376
              with tf.name_scope(''):
                _sample_and_train(strategy, train_step_fn, data_iterator)
621
622
623
624

          return _sample_and_train(strategy, train_step_fn, data_iterator)

        train_input_iter = iter(train_input)
625
626
627
628

        if int(global_step.value()) == 0:
          manager.save()

629
630
631
632
633
634
635
636
637
638
639
        checkpointed_step = int(global_step.value())
        logged_step = global_step.value()

        last_step_time = time.time()
        for _ in range(global_step.value(), train_steps,
                       num_steps_per_iteration):

          loss = _dist_train_step(train_input_iter)

          time_taken = time.time() - last_step_time
          last_step_time = time.time()
Pankaj Kanwar's avatar
Pankaj Kanwar committed
640
          steps_per_sec = num_steps_per_iteration * 1.0 / time_taken
641
642

          tf.compat.v2.summary.scalar(
Pankaj Kanwar's avatar
Pankaj Kanwar committed
643
644
645
              'steps_per_sec', steps_per_sec, step=global_step)

          steps_per_sec_list.append(steps_per_sec)
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661

          if global_step.value() - logged_step >= 100:
            tf.logging.info(
                'Step {} per-step time {:.3f}s loss={:.3f}'.format(
                    global_step.value(), time_taken / num_steps_per_iteration,
                    loss))
            logged_step = global_step.value()

          if ((int(global_step.value()) - checkpointed_step) >=
              checkpoint_every_n):
            manager.save()
            checkpointed_step = int(global_step.value())

  # Remove the checkpoint directories of the non-chief workers that
  # MultiWorkerMirroredStrategy forces us to save during sync distributed
  # training.
662
663
  clean_temporary_directories(strategy, manager_dir)
  clean_temporary_directories(strategy, summary_writer_filepath)
Pankaj Kanwar's avatar
Pankaj Kanwar committed
664
665
666
667
668
669
670
671
672
  # TODO(pkanwar): add accuracy metrics.
  if performance_summary_exporter is not None:
    metrics = {
        'steps_per_sec': np.mean(steps_per_sec_list),
        'steps_per_sec_p50': np.median(steps_per_sec_list),
        'steps_per_sec_max': max(steps_per_sec_list),
    }
    mixed_precision = 'bf16' if kwargs['use_bfloat16'] else 'fp32'
    performance_summary_exporter(metrics, mixed_precision)
pkulzc's avatar
pkulzc committed
673
674


675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
def prepare_eval_dict(detections, groundtruth, features):
  """Prepares eval dictionary containing detections and groundtruth.

  Takes in `detections` from the model, `groundtruth` and `features` returned
  from the eval tf.data.dataset and creates a dictionary of tensors suitable
  for detection eval modules.

  Args:
    detections: A dictionary of tensors returned by `model.postprocess`.
    groundtruth: `inputs.eval_input` returns an eval dataset of (features,
      labels) tuple. `groundtruth` must be set to `labels`.
      Please note that:
        * fields.InputDataFields.groundtruth_classes must be 0-indexed and
          in its 1-hot representation.
        * fields.InputDataFields.groundtruth_verified_neg_classes must be
          0-indexed and in its multi-hot repesentation.
        * fields.InputDataFields.groundtruth_not_exhaustive_classes must be
          0-indexed and in its multi-hot repesentation.
        * fields.InputDataFields.groundtruth_labeled_classes must be
          0-indexed and in its multi-hot repesentation.
    features: `inputs.eval_input` returns an eval dataset of (features, labels)
      tuple. This argument must be set to a dictionary containing the following
      keys and their corresponding values from `features` --
        * fields.InputDataFields.image
        * fields.InputDataFields.original_image
        * fields.InputDataFields.original_image_spatial_shape
        * fields.InputDataFields.true_image_shape
        * inputs.HASH_KEY

  Returns:
    eval_dict: A dictionary of tensors to pass to eval module.
    class_agnostic: Whether to evaluate detection in class agnostic mode.
  """

  groundtruth_boxes = groundtruth[fields.InputDataFields.groundtruth_boxes]
  groundtruth_boxes_shape = tf.shape(groundtruth_boxes)
  # For class-agnostic models, groundtruth one-hot encodings collapse to all
  # ones.
  class_agnostic = (
      fields.DetectionResultFields.detection_classes not in detections)
  if class_agnostic:
    groundtruth_classes_one_hot = tf.ones(
        [groundtruth_boxes_shape[0], groundtruth_boxes_shape[1], 1])
  else:
    groundtruth_classes_one_hot = groundtruth[
        fields.InputDataFields.groundtruth_classes]
  label_id_offset = 1  # Applying label id offset (b/63711816)
  groundtruth_classes = (
      tf.argmax(groundtruth_classes_one_hot, axis=2) + label_id_offset)
  groundtruth[fields.InputDataFields.groundtruth_classes] = groundtruth_classes

  label_id_offset_paddings = tf.constant([[0, 0], [1, 0]])
  if fields.InputDataFields.groundtruth_verified_neg_classes in groundtruth:
    groundtruth[
        fields.InputDataFields.groundtruth_verified_neg_classes] = tf.pad(
            groundtruth[
                fields.InputDataFields.groundtruth_verified_neg_classes],
            label_id_offset_paddings)
  if fields.InputDataFields.groundtruth_not_exhaustive_classes in groundtruth:
    groundtruth[
        fields.InputDataFields.groundtruth_not_exhaustive_classes] = tf.pad(
            groundtruth[
                fields.InputDataFields.groundtruth_not_exhaustive_classes],
            label_id_offset_paddings)
  if fields.InputDataFields.groundtruth_labeled_classes in groundtruth:
    groundtruth[fields.InputDataFields.groundtruth_labeled_classes] = tf.pad(
        groundtruth[fields.InputDataFields.groundtruth_labeled_classes],
        label_id_offset_paddings)

  use_original_images = fields.InputDataFields.original_image in features
  if use_original_images:
    eval_images = features[fields.InputDataFields.original_image]
    true_image_shapes = features[fields.InputDataFields.true_image_shape][:, :3]
    original_image_spatial_shapes = features[
        fields.InputDataFields.original_image_spatial_shape]
  else:
    eval_images = features[fields.InputDataFields.image]
    true_image_shapes = None
    original_image_spatial_shapes = None

  eval_dict = eval_util.result_dict_for_batched_example(
      eval_images,
      features[inputs.HASH_KEY],
      detections,
      groundtruth,
      class_agnostic=class_agnostic,
      scale_to_absolute=True,
      original_image_spatial_shapes=original_image_spatial_shapes,
      true_image_shapes=true_image_shapes)

  return eval_dict, class_agnostic


def concat_replica_results(tensor_dict):
  new_tensor_dict = {}
  for key, values in tensor_dict.items():
    new_tensor_dict[key] = tf.concat(values, axis=0)
  return new_tensor_dict


pkulzc's avatar
pkulzc committed
775
776
777
778
779
780
781
782
783
784
785
def eager_eval_loop(
    detection_model,
    configs,
    eval_dataset,
    use_tpu=False,
    postprocess_on_cpu=False,
    global_step=None):
  """Evaluate the model eagerly on the evaluation dataset.

  This method will compute the evaluation metrics specified in the configs on
  the entire evaluation dataset, then return the metrics. It will also log
786
  the metrics to TensorBoard.
pkulzc's avatar
pkulzc committed
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802

  Args:
    detection_model: A DetectionModel (based on Keras) to evaluate.
    configs: Object detection configs that specify the evaluators that should
      be used, as well as whether regularization loss should be included and
      if bfloat16 should be used on TPUs.
    eval_dataset: Dataset containing evaluation data.
    use_tpu: Whether a TPU is being used to execute the model for evaluation.
    postprocess_on_cpu: Whether model postprocessing should happen on
      the CPU when using a TPU to execute the model.
    global_step: A variable containing the training step this model was trained
      to. Used for logging purposes.

  Returns:
    A dict of evaluation metrics representing the results of this evaluation.
  """
803
  del postprocess_on_cpu
pkulzc's avatar
pkulzc committed
804
805
806
807
808
809
810
811
812
813
814
  train_config = configs['train_config']
  eval_input_config = configs['eval_input_config']
  eval_config = configs['eval_config']
  add_regularization_loss = train_config.add_regularization_loss

  is_training = False
  detection_model._is_training = is_training  # pylint: disable=protected-access
  tf.keras.backend.set_learning_phase(is_training)

  evaluator_options = eval_util.evaluator_options_from_eval_config(
      eval_config)
815
  batch_size = eval_config.batch_size
pkulzc's avatar
pkulzc committed
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843

  class_agnostic_category_index = (
      label_map_util.create_class_agnostic_category_index())
  class_agnostic_evaluators = eval_util.get_evaluators(
      eval_config,
      list(class_agnostic_category_index.values()),
      evaluator_options)

  class_aware_evaluators = None
  if eval_input_config.label_map_path:
    class_aware_category_index = (
        label_map_util.create_category_index_from_labelmap(
            eval_input_config.label_map_path))
    class_aware_evaluators = eval_util.get_evaluators(
        eval_config,
        list(class_aware_category_index.values()),
        evaluator_options)

  evaluators = None
  loss_metrics = {}

  @tf.function
  def compute_eval_dict(features, labels):
    """Compute the evaluation result on an image."""
    # For evaling on train data, it is necessary to check whether groundtruth
    # must be unpadded.
    boxes_shape = (
        labels[fields.InputDataFields.groundtruth_boxes].get_shape().as_list())
844
845
846
    unpad_groundtruth_tensors = (boxes_shape[1] is not None
                                 and not use_tpu
                                 and batch_size == 1)
847
    groundtruth_dict = labels
pkulzc's avatar
pkulzc committed
848
849
850
851
    labels = model_lib.unstack_batch(
        labels, unpad_groundtruth_tensors=unpad_groundtruth_tensors)

    losses_dict, prediction_dict = _compute_losses_and_predictions_dicts(
852
        detection_model, features, labels, add_regularization_loss)
853
854
855
856
857
858
859
860
861
862
863
864
865
866
    prediction_dict = detection_model.postprocess(
        prediction_dict, features[fields.InputDataFields.true_image_shape])
    eval_features = {
        fields.InputDataFields.image:
            features[fields.InputDataFields.image],
        fields.InputDataFields.original_image:
            features[fields.InputDataFields.original_image],
        fields.InputDataFields.original_image_spatial_shape:
            features[fields.InputDataFields.original_image_spatial_shape],
        fields.InputDataFields.true_image_shape:
            features[fields.InputDataFields.true_image_shape],
        inputs.HASH_KEY: features[inputs.HASH_KEY],
    }
    return losses_dict, prediction_dict, groundtruth_dict, eval_features
pkulzc's avatar
pkulzc committed
867

868
869
870
871
872
873
  agnostic_categories = label_map_util.create_class_agnostic_category_index()
  per_class_categories = label_map_util.create_category_index_from_labelmap(
      eval_input_config.label_map_path)
  keypoint_edges = [
      (kp.start, kp.end) for kp in eval_config.keypoint_edge]

874
  strategy = tf.compat.v2.distribute.get_strategy()
875

876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
  for i, (features, labels) in enumerate(eval_dataset):
    try:
      (losses_dict, prediction_dict, groundtruth_dict,
       eval_features) = strategy.run(
           compute_eval_dict, args=(features, labels))
    except:  # pylint:disable=bare-except
      tf.logging.info('A replica probably exhausted all examples. Skipping '
                      'pending examples on other replicas.')
      break
    (local_prediction_dict, local_groundtruth_dict,
     local_eval_features) = tf.nest.map_structure(
         strategy.experimental_local_results,
         [prediction_dict, groundtruth_dict, eval_features])
    local_prediction_dict = concat_replica_results(local_prediction_dict)
    local_groundtruth_dict = concat_replica_results(local_groundtruth_dict)
    local_eval_features = concat_replica_results(local_eval_features)

    eval_dict, class_agnostic = prepare_eval_dict(local_prediction_dict,
                                                  local_groundtruth_dict,
                                                  local_eval_features)
    for loss_key, loss_tensor in iter(losses_dict.items()):
      losses_dict[loss_key] = strategy.reduce(tf.distribute.ReduceOp.MEAN,
                                              loss_tensor, None)
899
900
901
902
903
    if class_agnostic:
      category_index = agnostic_categories
    else:
      category_index = per_class_categories

904
905
    if i % 100 == 0:
      tf.logging.info('Finished eval step %d', i)
pkulzc's avatar
pkulzc committed
906

907
    use_original_images = fields.InputDataFields.original_image in features
908
    if (use_original_images and i < eval_config.num_visualizations):
909
910
911
912
913
914
915
      sbys_image_list = vutils.draw_side_by_side_evaluation_image(
          eval_dict,
          category_index=category_index,
          max_boxes_to_draw=eval_config.max_num_boxes_to_visualize,
          min_score_thresh=eval_config.min_score_threshold,
          use_normalized_coordinates=False,
          keypoint_edges=keypoint_edges or None)
916
      for j, sbys_image in enumerate(sbys_image_list):
917
        tf.compat.v2.summary.image(
918
            name='eval_side_by_side_{}_{}'.format(i, j),
919
            step=global_step,
920
            data=sbys_image,
921
            max_outputs=eval_config.num_visualizations)
922
923
924
925
926
927
928
929
930
      if eval_util.has_densepose(eval_dict):
        dp_image_list = vutils.draw_densepose_visualizations(
            eval_dict)
        for j, dp_image in enumerate(dp_image_list):
          tf.compat.v2.summary.image(
              name='densepose_detections_{}_{}'.format(i, j),
              step=global_step,
              data=dp_image,
              max_outputs=eval_config.num_visualizations)
931

pkulzc's avatar
pkulzc committed
932
933
934
935
936
937
938
939
940
941
942
    if evaluators is None:
      if class_agnostic:
        evaluators = class_agnostic_evaluators
      else:
        evaluators = class_aware_evaluators

    for evaluator in evaluators:
      evaluator.add_eval_dict(eval_dict)

    for loss_key, loss_tensor in iter(losses_dict.items()):
      if loss_key not in loss_metrics:
943
944
        loss_metrics[loss_key] = []
      loss_metrics[loss_key].append(loss_tensor)
pkulzc's avatar
pkulzc committed
945
946
947
948
949
950

  eval_metrics = {}

  for evaluator in evaluators:
    eval_metrics.update(evaluator.evaluate())
  for loss_key in loss_metrics:
951
    eval_metrics[loss_key] = tf.reduce_mean(loss_metrics[loss_key])
pkulzc's avatar
pkulzc committed
952
953

  eval_metrics = {str(k): v for k, v in eval_metrics.items()}
954
  tf.logging.info('Eval metrics at step %d', global_step)
pkulzc's avatar
pkulzc committed
955
956
  for k in eval_metrics:
    tf.compat.v2.summary.scalar(k, eval_metrics[k], step=global_step)
957
    tf.logging.info('\t+ %s: %f', k, eval_metrics[k])
pkulzc's avatar
pkulzc committed
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973

  return eval_metrics


def eval_continuously(
    pipeline_config_path,
    config_override=None,
    train_steps=None,
    sample_1_of_n_eval_examples=1,
    sample_1_of_n_eval_on_train_examples=1,
    use_tpu=False,
    override_eval_num_epochs=True,
    postprocess_on_cpu=False,
    model_dir=None,
    checkpoint_dir=None,
    wait_interval=180,
974
    timeout=3600,
975
    eval_index=0,
pkulzc's avatar
pkulzc committed
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
    **kwargs):
  """Run continuous evaluation of a detection model eagerly.

  This method builds the model, and continously restores it from the most
  recent training checkpoint in the checkpoint directory & evaluates it
  on the evaluation data.

  Args:
    pipeline_config_path: A path to a pipeline config file.
    config_override: A pipeline_pb2.TrainEvalPipelineConfig text proto to
      override the config from `pipeline_config_path`.
    train_steps: Number of training steps. If None, the number of training steps
      is set from the `TrainConfig` proto.
    sample_1_of_n_eval_examples: Integer representing how often an eval example
      should be sampled. If 1, will sample all examples.
    sample_1_of_n_eval_on_train_examples: Similar to
      `sample_1_of_n_eval_examples`, except controls the sampling of training
      data for evaluation.
    use_tpu: Boolean, whether training and evaluation should run on TPU.
    override_eval_num_epochs: Whether to overwrite the number of epochs to 1 for
      eval_input.
    postprocess_on_cpu: When use_tpu and postprocess_on_cpu are true,
      postprocess is scheduled on the host cpu.
999
1000
1001
1002
1003
1004
    model_dir: Directory to output resulting evaluation summaries to.
    checkpoint_dir: Directory that contains the training checkpoints.
    wait_interval: The mimmum number of seconds to wait before checking for a
      new checkpoint.
    timeout: The maximum number of seconds to wait for a checkpoint. Execution
      will terminate if no new checkpoints are found after these many seconds.
1005
1006
    eval_index: int, If given, only evaluate the dataset at the given
      index. By default, evaluates dataset at 0'th index.
1007

pkulzc's avatar
pkulzc committed
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
    **kwargs: Additional keyword arguments for configuration override.
  """
  get_configs_from_pipeline_file = MODEL_BUILD_UTIL_MAP[
      'get_configs_from_pipeline_file']
  merge_external_params_with_configs = MODEL_BUILD_UTIL_MAP[
      'merge_external_params_with_configs']

  configs = get_configs_from_pipeline_file(
      pipeline_config_path, config_override=config_override)
  kwargs.update({
      'sample_1_of_n_eval_examples': sample_1_of_n_eval_examples,
      'use_bfloat16': configs['train_config'].use_bfloat16 and use_tpu
  })
  if train_steps is not None:
    kwargs['train_steps'] = train_steps
  if override_eval_num_epochs:
    kwargs.update({'eval_num_epochs': 1})
    tf.logging.warning(
        'Forced number of epochs for all eval validations to be 1.')
  configs = merge_external_params_with_configs(
1028
      configs, None, kwargs_dict=kwargs)
pkulzc's avatar
pkulzc committed
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
  model_config = configs['model']
  train_input_config = configs['train_input_config']
  eval_config = configs['eval_config']
  eval_input_configs = configs['eval_input_configs']
  eval_on_train_input_config = copy.deepcopy(train_input_config)
  eval_on_train_input_config.sample_1_of_n_examples = (
      sample_1_of_n_eval_on_train_examples)
  if override_eval_num_epochs and eval_on_train_input_config.num_epochs != 1:
    tf.logging.warning('Expected number of evaluation epochs is 1, but '
                       'instead encountered `eval_on_train_input_config'
                       '.num_epochs` = '
                       '{}. Overwriting `num_epochs` to 1.'.format(
                           eval_on_train_input_config.num_epochs))
    eval_on_train_input_config.num_epochs = 1

1044
1045
1046
  if kwargs['use_bfloat16']:
    tf.compat.v2.keras.mixed_precision.experimental.set_policy('mixed_bfloat16')

1047
1048
1049
1050
1051
  eval_input_config = eval_input_configs[eval_index]
  strategy = tf.compat.v2.distribute.get_strategy()
  with strategy.scope():
    detection_model = MODEL_BUILD_UTIL_MAP['detection_model_fn_base'](
        model_config=model_config, is_training=True)
pkulzc's avatar
pkulzc committed
1052

1053
1054
1055
1056
1057
1058
  eval_input = strategy.experimental_distribute_dataset(
      inputs.eval_input(
          eval_config=eval_config,
          eval_input_config=eval_input_config,
          model_config=model_config,
          model=detection_model))
Vighnesh Birodkar's avatar
Vighnesh Birodkar committed
1059

pkulzc's avatar
pkulzc committed
1060
1061
1062
  global_step = tf.compat.v2.Variable(
      0, trainable=False, dtype=tf.compat.v2.dtypes.int64)

1063
1064
  for latest_checkpoint in tf.train.checkpoints_iterator(
      checkpoint_dir, timeout=timeout, min_interval_secs=wait_interval):
pkulzc's avatar
pkulzc committed
1065
1066
    ckpt = tf.compat.v2.train.Checkpoint(
        step=global_step, model=detection_model)
1067
1068
1069

    ckpt.restore(latest_checkpoint).expect_partial()

1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
    summary_writer = tf.compat.v2.summary.create_file_writer(
        os.path.join(model_dir, 'eval', eval_input_config.name))
    with summary_writer.as_default():
      eager_eval_loop(
          detection_model,
          configs,
          eval_input,
          use_tpu=use_tpu,
          postprocess_on_cpu=postprocess_on_cpu,
          global_step=global_step)