local_test.sh 4.59 KB
Newer Older
yukun's avatar
yukun committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#!/bin/bash
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
#
# This script is used to run local test on PASCAL VOC 2012. Users could also
# modify from this script for their use case.
#
# Usage:
#   # From the tensorflow/models/research/deeplab directory.
22
#   bash ./local_test.sh
yukun's avatar
yukun committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
#
#

# Exit immediately if a command exits with a non-zero status.
set -e

# Move one-level up to tensorflow/models/research directory.
cd ..

# Update PYTHONPATH.
export PYTHONPATH=$PYTHONPATH:`pwd`:`pwd`/slim

# Set up the working environment.
CURRENT_DIR=$(pwd)
WORK_DIR="${CURRENT_DIR}/deeplab"

# Run model_test first to make sure the PYTHONPATH is correctly set.
40
python "${WORK_DIR}"/model_test.py
yukun's avatar
yukun committed
41
42
43
44

# Go to datasets folder and download PASCAL VOC 2012 segmentation dataset.
DATASET_DIR="datasets"
cd "${WORK_DIR}/${DATASET_DIR}"
45
bash download_and_convert_voc2012.sh
yukun's avatar
yukun committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

# Go back to original directory.
cd "${CURRENT_DIR}"

# Set up the working directories.
PASCAL_FOLDER="pascal_voc_seg"
EXP_FOLDER="exp/train_on_trainval_set"
INIT_FOLDER="${WORK_DIR}/${DATASET_DIR}/${PASCAL_FOLDER}/init_models"
TRAIN_LOGDIR="${WORK_DIR}/${DATASET_DIR}/${PASCAL_FOLDER}/${EXP_FOLDER}/train"
EVAL_LOGDIR="${WORK_DIR}/${DATASET_DIR}/${PASCAL_FOLDER}/${EXP_FOLDER}/eval"
VIS_LOGDIR="${WORK_DIR}/${DATASET_DIR}/${PASCAL_FOLDER}/${EXP_FOLDER}/vis"
EXPORT_DIR="${WORK_DIR}/${DATASET_DIR}/${PASCAL_FOLDER}/${EXP_FOLDER}/export"
mkdir -p "${INIT_FOLDER}"
mkdir -p "${TRAIN_LOGDIR}"
mkdir -p "${EVAL_LOGDIR}"
mkdir -p "${VIS_LOGDIR}"
mkdir -p "${EXPORT_DIR}"

# Copy locally the trained checkpoint as the initial checkpoint.
TF_INIT_ROOT="http://download.tensorflow.org/models"
TF_INIT_CKPT="deeplabv3_pascal_train_aug_2018_01_04.tar.gz"
cd "${INIT_FOLDER}"
wget -nd -c "${TF_INIT_ROOT}/${TF_INIT_CKPT}"
tar -xf "${TF_INIT_CKPT}"
cd "${CURRENT_DIR}"

PASCAL_DATASET="${WORK_DIR}/${DATASET_DIR}/${PASCAL_FOLDER}/tfrecord"

# Train 10 iterations.
NUM_ITERATIONS=10
python "${WORK_DIR}"/train.py \
  --logtostderr \
  --train_split="trainval" \
  --model_variant="xception_65" \
  --atrous_rates=6 \
  --atrous_rates=12 \
  --atrous_rates=18 \
  --output_stride=16 \
  --decoder_output_stride=4 \
85
  --train_crop_size="513,513" \
yukun's avatar
yukun committed
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
  --train_batch_size=4 \
  --training_number_of_steps="${NUM_ITERATIONS}" \
  --fine_tune_batch_norm=true \
  --tf_initial_checkpoint="${INIT_FOLDER}/deeplabv3_pascal_train_aug/model.ckpt" \
  --train_logdir="${TRAIN_LOGDIR}" \
  --dataset_dir="${PASCAL_DATASET}"

# Run evaluation. This performs eval over the full val split (1449 images) and
# will take a while.
# Using the provided checkpoint, one should expect mIOU=82.20%.
python "${WORK_DIR}"/eval.py \
  --logtostderr \
  --eval_split="val" \
  --model_variant="xception_65" \
  --atrous_rates=6 \
  --atrous_rates=12 \
  --atrous_rates=18 \
  --output_stride=16 \
  --decoder_output_stride=4 \
105
  --eval_crop_size="513,513" \
yukun's avatar
yukun committed
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
  --checkpoint_dir="${TRAIN_LOGDIR}" \
  --eval_logdir="${EVAL_LOGDIR}" \
  --dataset_dir="${PASCAL_DATASET}" \
  --max_number_of_evaluations=1

# Visualize the results.
python "${WORK_DIR}"/vis.py \
  --logtostderr \
  --vis_split="val" \
  --model_variant="xception_65" \
  --atrous_rates=6 \
  --atrous_rates=12 \
  --atrous_rates=18 \
  --output_stride=16 \
  --decoder_output_stride=4 \
121
  --vis_crop_size="513,513" \
yukun's avatar
yukun committed
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
  --checkpoint_dir="${TRAIN_LOGDIR}" \
  --vis_logdir="${VIS_LOGDIR}" \
  --dataset_dir="${PASCAL_DATASET}" \
  --max_number_of_iterations=1

# Export the trained checkpoint.
CKPT_PATH="${TRAIN_LOGDIR}/model.ckpt-${NUM_ITERATIONS}"
EXPORT_PATH="${EXPORT_DIR}/frozen_inference_graph.pb"

python "${WORK_DIR}"/export_model.py \
  --logtostderr \
  --checkpoint_path="${CKPT_PATH}" \
  --export_path="${EXPORT_PATH}" \
  --model_variant="xception_65" \
  --atrous_rates=6 \
  --atrous_rates=12 \
  --atrous_rates=18 \
  --output_stride=16 \
  --decoder_output_stride=4 \
  --num_classes=21 \
  --crop_size=513 \
  --crop_size=513 \
  --inference_scales=1.0

# Run inference with the exported checkpoint.
# Please refer to the provided deeplab_demo.ipynb for an example.