optimizer.py 2.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Toby Boyd's avatar
Toby Boyd committed
15
"""Optimizer from addons and learning rate scheduler."""
16
17
18
19
20
21
22
23

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
class LearningRateSchedule(tf.keras.optimizers.schedules.LearningRateSchedule):
  """Learning rate schedule."""

  def __init__(self, initial_learning_rate, hidden_size, warmup_steps):
    """Initialize configuration of the learning rate schedule.

    Args:
      initial_learning_rate: A float, the initial learning rate.
      hidden_size: An integer, the model dimension in the hidden layers.
      warmup_steps: An integer, the number of steps required for linear warmup.
    """
    super(LearningRateSchedule, self).__init__()
    self.initial_learning_rate = initial_learning_rate
    self.hidden_size = hidden_size
    self.warmup_steps = tf.cast(warmup_steps, tf.float32)

  def __call__(self, global_step):
    """Calculate learning rate with linear warmup and rsqrt decay.

    Args:
      global_step: An integer, the current global step used for learning rate
        calculation.

    Returns:
      A float, the learning rate needs to be used for current global step.
    """
    with tf.name_scope('learning_rate_schedule'):
      global_step = tf.cast(global_step, tf.float32)
      learning_rate = self.initial_learning_rate
      learning_rate *= (self.hidden_size**-0.5)
      # Apply linear warmup
      learning_rate *= tf.minimum(1.0, global_step / self.warmup_steps)
      # Apply rsqrt decay
      learning_rate /= tf.sqrt(tf.maximum(global_step, self.warmup_steps))
      return learning_rate

  def get_config(self):
    """Get the configuration of the learning rate schedule."""
    return {
        'initial_learning_rate': self.initial_learning_rate,
        'hidden_size': self.hidden_size,
        'warmup_steps': self.warmup_steps,
    }