question_answering_test.py 6.64 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for official.nlp.tasks.question_answering."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
17
18
import itertools
import json
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
19
import os
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
20
from absl.testing import parameterized
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
21
22
23
24
25
26
import tensorflow as tf

from official.nlp.bert import configs
from official.nlp.bert import export_tfhub
from official.nlp.configs import bert
from official.nlp.configs import encoders
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
27
from official.nlp.data import question_answering_dataloader
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
28
29
30
from official.nlp.tasks import question_answering


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
31
class QuestionAnsweringTaskTest(tf.test.TestCase, parameterized.TestCase):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
32
33
34
35
36

  def setUp(self):
    super(QuestionAnsweringTaskTest, self).setUp()
    self._encoder_config = encoders.TransformerEncoderConfig(
        vocab_size=30522, num_layers=1)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
37
    self._train_data_config = question_answering_dataloader.QADataConfig(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
        input_path="dummy",
        seq_length=128,
        global_batch_size=1)

    val_data = {"version": "1.1",
                "data": [{"paragraphs": [
                    {"context": "Sky is blue.",
                     "qas": [{"question": "What is blue?", "id": "1234",
                              "answers": [{"text": "Sky", "answer_start": 0},
                                          {"text": "Sky", "answer_start": 0},
                                          {"text": "Sky", "answer_start": 0}]
                              }]}]}]}
    self._val_input_path = os.path.join(self.get_temp_dir(), "val_data.json")
    with tf.io.gfile.GFile(self._val_input_path, "w") as writer:
      writer.write(json.dumps(val_data, indent=4) + "\n")

    self._test_vocab = os.path.join(self.get_temp_dir(), "vocab.txt")
    with tf.io.gfile.GFile(self._test_vocab, "w") as writer:
      writer.write("[PAD]\n[UNK]\n[CLS]\n[SEP]\n[MASK]\nsky\nis\nblue\n")

  def _get_validation_data_config(self, version_2_with_negative=False):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
59
60
    return question_answering_dataloader.QADataConfig(
        is_training=False,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
61
62
63
64
65
66
67
68
        input_path=self._val_input_path,
        input_preprocessed_data_path=self.get_temp_dir(),
        seq_length=128,
        global_batch_size=1,
        version_2_with_negative=version_2_with_negative,
        vocab_file=self._test_vocab,
        tokenization="WordPiece",
        do_lower_case=True)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
69
70
71
72
73

  def _run_task(self, config):
    task = question_answering.QuestionAnsweringTask(config)
    model = task.build_model()
    metrics = task.build_metrics()
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
74
    task.initialize(model)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
75

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
76
77
    train_dataset = task.build_inputs(config.train_data)
    train_iterator = iter(train_dataset)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
78
    optimizer = tf.keras.optimizers.SGD(lr=0.1)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
79
80
81
82
83
84
85
86
87
88
89
90
91
92
    task.train_step(next(train_iterator), model, optimizer, metrics=metrics)

    val_dataset = task.build_inputs(config.validation_data)
    val_iterator = iter(val_dataset)
    logs = task.validation_step(next(val_iterator), model, metrics=metrics)
    logs = task.aggregate_logs(step_outputs=logs)
    metrics = task.reduce_aggregated_logs(logs)
    self.assertIn("final_f1", metrics)

  @parameterized.parameters(itertools.product(
      (False, True),
      ("WordPiece", "SentencePiece"),
  ))
  def test_task(self, version_2_with_negative, tokenization):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
93
94
95
96
97
98
99
    # Saves a checkpoint.
    pretrain_cfg = bert.BertPretrainerConfig(
        encoder=self._encoder_config,
        cls_heads=[
            bert.ClsHeadConfig(
                inner_dim=10, num_classes=3, name="next_sentence")
        ])
Hongkun Yu's avatar
Hongkun Yu committed
100
    pretrain_model = bert.instantiate_pretrainer_from_cfg(pretrain_cfg)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
101
102
103
104
105
106
    ckpt = tf.train.Checkpoint(
        model=pretrain_model, **pretrain_model.checkpoint_items)
    saved_path = ckpt.save(self.get_temp_dir())

    config = question_answering.QuestionAnsweringConfig(
        init_checkpoint=saved_path,
Hongkun Yu's avatar
Hongkun Yu committed
107
        model=question_answering.ModelConfig(encoder=self._encoder_config),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
108
109
110
111
        train_data=self._train_data_config,
        validation_data=self._get_validation_data_config(
            version_2_with_negative))
    self._run_task(config)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
112
113
114

  def test_task_with_fit(self):
    config = question_answering.QuestionAnsweringConfig(
Hongkun Yu's avatar
Hongkun Yu committed
115
        model=question_answering.ModelConfig(encoder=self._encoder_config),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
116
117
        train_data=self._train_data_config,
        validation_data=self._get_validation_data_config())
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
    task = question_answering.QuestionAnsweringTask(config)
    model = task.build_model()
    model = task.compile_model(
        model,
        optimizer=tf.keras.optimizers.SGD(lr=0.1),
        train_step=task.train_step,
        metrics=[tf.keras.metrics.SparseCategoricalAccuracy(name="accuracy")])
    dataset = task.build_inputs(config.train_data)
    logs = model.fit(dataset, epochs=1, steps_per_epoch=2)
    self.assertIn("loss", logs.history)
    self.assertIn("start_positions_accuracy", logs.history)
    self.assertIn("end_positions_accuracy", logs.history)

  def _export_bert_tfhub(self):
    bert_config = configs.BertConfig(
        vocab_size=30522,
        hidden_size=16,
        intermediate_size=32,
        max_position_embeddings=128,
        num_attention_heads=2,
        num_hidden_layers=1)
    _, encoder = export_tfhub.create_bert_model(bert_config)
    model_checkpoint_dir = os.path.join(self.get_temp_dir(), "checkpoint")
    checkpoint = tf.train.Checkpoint(model=encoder)
    checkpoint.save(os.path.join(model_checkpoint_dir, "test"))
    model_checkpoint_path = tf.train.latest_checkpoint(model_checkpoint_dir)

    vocab_file = os.path.join(self.get_temp_dir(), "uncased_vocab.txt")
    with tf.io.gfile.GFile(vocab_file, "w") as f:
      f.write("dummy content")

    hub_destination = os.path.join(self.get_temp_dir(), "hub")
    export_tfhub.export_bert_tfhub(bert_config, model_checkpoint_path,
                                   hub_destination, vocab_file)
    return hub_destination

  def test_task_with_hub(self):
    hub_module_url = self._export_bert_tfhub()
    config = question_answering.QuestionAnsweringConfig(
        hub_module_url=hub_module_url,
Hongkun Yu's avatar
Hongkun Yu committed
158
        model=question_answering.ModelConfig(encoder=self._encoder_config),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
159
160
        train_data=self._train_data_config,
        validation_data=self._get_validation_data_config())
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
161
162
163
164
165
    self._run_task(config)


if __name__ == "__main__":
  tf.test.main()