bert_pretrainer.py 8.53 KB
Newer Older
Hongkun Yu's avatar
Hongkun Yu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Trainer network for BERT-style models."""
16
# pylint: disable=g-classes-have-attributes
Hongkun Yu's avatar
Hongkun Yu committed
17
18
19
20
21
22
from __future__ import absolute_import
from __future__ import division
# from __future__ import google_type_annotations
from __future__ import print_function

import copy
23
24
25
from typing import List, Optional

import gin
Hongkun Yu's avatar
Hongkun Yu committed
26
import tensorflow as tf
Hongkun Yu's avatar
Hongkun Yu committed
27

Hongkun Yu's avatar
Hongkun Yu committed
28
from official.nlp.modeling import layers
Hongkun Yu's avatar
Hongkun Yu committed
29
30
31
32
33
34
35
36
37
38
39
from official.nlp.modeling import networks


@tf.keras.utils.register_keras_serializable(package='Text')
class BertPretrainer(tf.keras.Model):
  """BERT network training model.

  This is an implementation of the network structure surrounding a transformer
  encoder as described in "BERT: Pre-training of Deep Bidirectional Transformers
  for Language Understanding" (https://arxiv.org/abs/1810.04805).

40
41
42
  The BertPretrainer allows a user to pass in a transformer stack, and
  instantiates the masked language model and classification networks that are
  used to create the training objectives.
Hongkun Yu's avatar
Hongkun Yu committed
43

44
45
46
  *Note* that the model is constructed by
  [Keras Functional API](https://keras.io/guides/functional_api/).

47
  Arguments:
Hongkun Yu's avatar
Hongkun Yu committed
48
    network: A transformer network. This network should output a sequence output
49
      and a classification output.
Hongkun Yu's avatar
Hongkun Yu committed
50
51
    num_classes: Number of classes to predict from the classification network.
    num_token_predictions: Number of tokens to predict from the masked LM.
52
53
    embedding_table: Embedding table of a network. If None, the
      "network.get_embedding_table()" is used.
Hongkun Yu's avatar
Hongkun Yu committed
54
55
    activation: The activation (if any) to use in the masked LM network. If
      None, no activation will be used.
Hongkun Yu's avatar
Hongkun Yu committed
56
57
58
59
60
61
62
63
64
65
    initializer: The initializer (if any) to use in the masked LM and
      classification networks. Defaults to a Glorot uniform initializer.
    output: The output style for this network. Can be either 'logits' or
      'predictions'.
  """

  def __init__(self,
               network,
               num_classes,
               num_token_predictions,
66
               embedding_table=None,
Hongkun Yu's avatar
Hongkun Yu committed
67
68
69
70
71
72
73
74
75
76
77
78
79
               activation=None,
               initializer='glorot_uniform',
               output='logits',
               **kwargs):
    self._self_setattr_tracking = False
    self._config = {
        'network': network,
        'num_classes': num_classes,
        'num_token_predictions': num_token_predictions,
        'activation': activation,
        'initializer': initializer,
        'output': output,
    }
Hongkun Yu's avatar
Hongkun Yu committed
80
    self.encoder = network
Hongkun Yu's avatar
Hongkun Yu committed
81
82
83
84
    # We want to use the inputs of the passed network as the inputs to this
    # Model. To do this, we need to keep a copy of the network inputs for use
    # when we construct the Model object at the end of init. (We keep a copy
    # because we'll be adding another tensor to the copy later.)
Hongkun Yu's avatar
Hongkun Yu committed
85
    network_inputs = self.encoder.inputs
Hongkun Yu's avatar
Hongkun Yu committed
86
87
88
89
90
91
92
    inputs = copy.copy(network_inputs)

    # Because we have a copy of inputs to create this Model object, we can
    # invoke the Network object with its own input tensors to start the Model.
    # Note that, because of how deferred construction happens, we can't use
    # the copy of the list here - by the time the network is invoked, the list
    # object contains the additional input added below.
Hongkun Yu's avatar
Hongkun Yu committed
93
    sequence_output, cls_output = self.encoder(network_inputs)
Hongkun Yu's avatar
Hongkun Yu committed
94

Hongkun Yu's avatar
Hongkun Yu committed
95
96
97
98
99
    # The encoder network may get outputs from all layers.
    if isinstance(sequence_output, list):
      sequence_output = sequence_output[-1]
    if isinstance(cls_output, list):
      cls_output = cls_output[-1]
Hongkun Yu's avatar
Hongkun Yu committed
100
101
102
103
104
105
106
107
108
109
110
111
112
    sequence_output_length = sequence_output.shape.as_list()[1]
    if sequence_output_length < num_token_predictions:
      raise ValueError(
          "The passed network's output length is %s, which is less than the "
          'requested num_token_predictions %s.' %
          (sequence_output_length, num_token_predictions))

    masked_lm_positions = tf.keras.layers.Input(
        shape=(num_token_predictions,),
        name='masked_lm_positions',
        dtype=tf.int32)
    inputs.append(masked_lm_positions)

Hongkun Yu's avatar
Hongkun Yu committed
113
114
115
    if embedding_table is None:
      embedding_table = self.encoder.get_embedding_table()
    self.masked_lm = layers.MaskedLM(
116
        embedding_table=embedding_table,
Hongkun Yu's avatar
Hongkun Yu committed
117
118
119
        activation=activation,
        initializer=initializer,
        output=output,
Hongkun Yu's avatar
Hongkun Yu committed
120
121
122
        name='cls/predictions')
    lm_outputs = self.masked_lm(
        sequence_output, masked_positions=masked_lm_positions)
Hongkun Yu's avatar
Hongkun Yu committed
123
124
125
126
127
128
129
130
131
132

    self.classification = networks.Classification(
        input_width=cls_output.shape[-1],
        num_classes=num_classes,
        initializer=initializer,
        output=output,
        name='classification')
    sentence_outputs = self.classification(cls_output)

    super(BertPretrainer, self).__init__(
Hongkun Yu's avatar
Hongkun Yu committed
133
134
135
        inputs=inputs,
        outputs=dict(masked_lm=lm_outputs, classification=sentence_outputs),
        **kwargs)
Hongkun Yu's avatar
Hongkun Yu committed
136
137
138
139
140
141
142

  def get_config(self):
    return self._config

  @classmethod
  def from_config(cls, config, custom_objects=None):
    return cls(**config)
143
144
145
146
147
148
149
150
151
152


# TODO(hongkuny): Migrate to BertPretrainerV2 for all usages.
@tf.keras.utils.register_keras_serializable(package='Text')
@gin.configurable
class BertPretrainerV2(tf.keras.Model):
  """BERT pretraining model V2.

  (Experimental).
  Adds the masked language model head and optional classification heads upon the
Hongkun Yu's avatar
Hongkun Yu committed
153
  transformer encoder.
154
155
156
157

  Arguments:
    encoder_network: A transformer network. This network should output a
      sequence output and a classification output.
Hongkun Yu's avatar
Hongkun Yu committed
158
159
    mlm_activation: The activation (if any) to use in the masked LM network. If
      None, no activation will be used.
160
161
162
163
164
165
166
167
168
169
170
171
172
173
    mlm_initializer: The initializer (if any) to use in the masked LM. Default
      to a Glorot uniform initializer.
    classification_heads: A list of optional head layers to transform on encoder
      sequence outputs.
    name: The name of the model.
  Inputs: Inputs defined by the encoder network, plus `masked_lm_positions` as a
    dictionary.
  Outputs: A dictionary of `lm_output` and classification head outputs keyed by
    head names.
  """

  def __init__(
      self,
      encoder_network: tf.keras.Model,
Hongkun Yu's avatar
Hongkun Yu committed
174
      mlm_activation=None,
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
      mlm_initializer='glorot_uniform',
      classification_heads: Optional[List[tf.keras.layers.Layer]] = None,
      name: str = 'bert',
      **kwargs):
    self._self_setattr_tracking = False
    self._config = {
        'encoder_network': encoder_network,
        'mlm_initializer': mlm_initializer,
        'classification_heads': classification_heads,
        'name': name,
    }

    self.encoder_network = encoder_network
    inputs = copy.copy(self.encoder_network.inputs)
    sequence_output, _ = self.encoder_network(inputs)

    self.classification_heads = classification_heads or []
    if len(set([cls.name for cls in self.classification_heads])) != len(
        self.classification_heads):
      raise ValueError('Classification heads should have unique names.')

    outputs = dict()
Hongkun Yu's avatar
Hongkun Yu committed
197
198
199
200
201
202
203
204
205
206
    self.masked_lm = layers.MaskedLM(
        embedding_table=self.encoder_network.get_embedding_table(),
        activation=mlm_activation,
        initializer=mlm_initializer,
        name='cls/predictions')
    masked_lm_positions = tf.keras.layers.Input(
        shape=(None,), name='masked_lm_positions', dtype=tf.int32)
    inputs.append(masked_lm_positions)
    outputs['lm_output'] = self.masked_lm(
        sequence_output, masked_positions=masked_lm_positions)
207
208
209
210
211
212
213
214
215
    for cls_head in self.classification_heads:
      outputs[cls_head.name] = cls_head(sequence_output)

    super(BertPretrainerV2, self).__init__(
        inputs=inputs, outputs=outputs, name=name, **kwargs)

  @property
  def checkpoint_items(self):
    """Returns a dictionary of items to be additionally checkpointed."""
Hongkun Yu's avatar
Hongkun Yu committed
216
    items = dict(encoder=self.encoder_network, masked_lm=self.masked_lm)
217
218
219
220
221
222
223
224
225
226
227
    for head in self.classification_heads:
      for key, item in head.checkpoint_items.items():
        items['.'.join([head.name, key])] = item
    return items

  def get_config(self):
    return self._config

  @classmethod
  def from_config(cls, config, custom_objects=None):
    return cls(**config)