position_embedding.py 7.97 KB
Newer Older
Hongkun Yu's avatar
Hongkun Yu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Keras-based positional embedding layer."""
16
# pylint: disable=g-classes-have-attributes
Hongkun Yu's avatar
Hongkun Yu committed
17
18
19
20
21
from __future__ import absolute_import
from __future__ import division
# from __future__ import google_type_annotations
from __future__ import print_function

22
23
import math

Hongkun Yu's avatar
Hongkun Yu committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import tensorflow as tf

from official.modeling import tf_utils


@tf.keras.utils.register_keras_serializable(package="Text")
class PositionEmbedding(tf.keras.layers.Layer):
  """Creates a positional embedding.

  This layer creates a positional embedding as described in "BERT: Pre-training
  of Deep Bidirectional Transformers for Language Understanding"
  (https://arxiv.org/abs/1810.04805).

  This layer can be set up to either create a statically shaped slice or a
  dynamically shaped slice. If `use_dynamic_slicing` is True, the input tensor
  can have a dynamic 1st dimension, while if `use_dynamic_slicing` is False the
  input size must be fixed.

42
  Arguments:
Hongkun Yu's avatar
Hongkun Yu committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
    use_dynamic_slicing: Whether to use the dynamic slicing path.
    max_sequence_length: The maximum size of the dynamic sequence. Only
      applicable if `use_dynamic_slicing` is True.
    initializer: The initializer to use for the embedding weights. Defaults to
      "glorot_uniform".
  """

  def __init__(self,
               initializer="glorot_uniform",
               use_dynamic_slicing=False,
               max_sequence_length=None,
               **kwargs):
    # We need to have a default dtype of float32, since the inputs (which Keras
    # usually uses to infer the dtype) will always be int32.
    if "dtype" not in kwargs:
      kwargs["dtype"] = "float32"

    super(PositionEmbedding, self).__init__(**kwargs)
    if use_dynamic_slicing and max_sequence_length is None:
      raise ValueError(
          "If `use_dynamic_slicing` is True, `max_sequence_length` must be set."
      )
    self._max_sequence_length = max_sequence_length
    self._initializer = tf.keras.initializers.get(initializer)
    self._use_dynamic_slicing = use_dynamic_slicing

  def get_config(self):
    config = {
        "max_sequence_length": self._max_sequence_length,
        "initializer": tf.keras.initializers.serialize(self._initializer),
        "use_dynamic_slicing": self._use_dynamic_slicing,
    }
    base_config = super(PositionEmbedding, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))

  def build(self, input_shape):
    """Implements build() for the layer."""
    dimension_list = input_shape.as_list()

    if len(dimension_list) != 3:
      raise ValueError("PositionEmbedding expects a 3-dimensional input tensor "
                       "of shape [batch, sequence, width]")
    seq_length = dimension_list[1]
    width = dimension_list[2]

    # If we are not using dynamic slicing, we must assume that the sequence
    # length is fixed and max_sequence_length should not be specified.
    if not self._use_dynamic_slicing:
      if seq_length is None:
        raise ValueError(
            "PositionEmbedding must have `use_dynamic_slicing` set "
            "to True (and max_sequence_length set) when the "
            "sequence (1st) dimension of the input is None.")
      if self._max_sequence_length is not None:
        raise ValueError(
            "When `use_dynamic_slicing` is False, max_sequence_length should "
            "not be specified and we ought to use seq_length to get the "
            "variable shape.")

    if self._max_sequence_length is not None:
      weight_sequence_length = self._max_sequence_length
    else:
      weight_sequence_length = seq_length

    self._position_embeddings = self.add_weight(
        "embeddings",
        shape=[weight_sequence_length, width],
        initializer=self._initializer)

    super(PositionEmbedding, self).build(input_shape)

  def call(self, inputs):
    """Implements call() for the layer."""
Yichao 'Peak' Ji's avatar
Yichao 'Peak' Ji committed
116
    input_shape = tf_utils.get_shape_list(inputs, expected_rank=3)
Hongkun Yu's avatar
Hongkun Yu committed
117
    if self._use_dynamic_slicing:
Yichao 'Peak' Ji's avatar
Yichao 'Peak' Ji committed
118
      position_embeddings = self._position_embeddings[:input_shape[1], :]
Hongkun Yu's avatar
Hongkun Yu committed
119
    else:
120
      position_embeddings = self._position_embeddings
Hongkun Yu's avatar
Hongkun Yu committed
121

122
    return tf.broadcast_to(position_embeddings, input_shape)
123

124

125
126
127
@tf.keras.utils.register_keras_serializable(package="Text")
class RelativePositionEmbedding(tf.keras.layers.Layer):
  """Creates a positional embedding.
128

129
130
131
132
  This layer calculates the position encoding as a mix of sine and cosine
  functions with geometrically increasing wavelengths. Defined and formulized in
   "Attention is All You Need", section 3.5.
  (https://arxiv.org/abs/1706.03762).
133

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
  Arguments:
    hidden_size: Size of the hidden layer.
    min_timescale: Minimum scale that will be applied at each position
    max_timescale: Maximum scale that will be applied at each position.
  """

  def __init__(self,
               hidden_size,
               min_timescale=1.0,
               max_timescale=1.0e4,
               **kwargs):
    # We need to have a default dtype of float32, since the inputs (which Keras
    # usually uses to infer the dtype) will always be int32.
    # We compute the positional encoding in float32 even if the model uses
    # float16, as many of the ops used, like log and exp, are numerically
    # unstable in float16.
    if "dtype" not in kwargs:
      kwargs["dtype"] = "float32"

    super(RelativePositionEmbedding, self).__init__(**kwargs)
    self._hidden_size = hidden_size
    self._min_timescale = min_timescale
    self._max_timescale = max_timescale

  def get_config(self):
    config = {
        "hidden_size": self._hidden_size,
        "min_timescale": self._min_timescale,
        "max_timescale": self._max_timescale,
    }
    base_config = super(RelativePositionEmbedding, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))

167
168
  def call(self, inputs, length=None):
    """Implements call() for the layer.
169

170
171
172
173
174
175
176
177
178
179
    Args:
      inputs: An tensor whose second dimension will be used as `length`. If
        `None`, the other `length` argument must be specified.
      length: An optional integer specifying the number of positions. If both
        `inputs` and `length` are spcified, `length` must be equal to the
        second dimension of `inputs`.

    Returns:
      A tensor in shape of [length, hidden_size].
    """
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
    if inputs is None and length is None:
      raise ValueError(
          "If inputs is None, `length` must be set in "
          "RelativePositionEmbedding().")
    if inputs is not None:
      input_shape = tf_utils.get_shape_list(inputs)
      if length is not None and length != input_shape[1]:
        raise ValueError(
            "If inputs is not None, `length` must equal to input_shape[1]."
        )
      length = input_shape[1]
    position = tf.cast(tf.range(length), tf.float32)
    num_timescales = self._hidden_size // 2
    min_timescale, max_timescale = self._min_timescale, self._max_timescale
    log_timescale_increment = (
        math.log(float(max_timescale) / float(min_timescale)) /
        (tf.cast(num_timescales, tf.float32) - 1))
    inv_timescales = min_timescale * tf.exp(
        tf.cast(tf.range(num_timescales), tf.float32) *
        -log_timescale_increment)
    scaled_time = tf.expand_dims(position, 1) * tf.expand_dims(inv_timescales,
                                                               0)
    position_embeddings = tf.concat([tf.sin(scaled_time), tf.cos(scaled_time)],
                                    axis=1)
    return position_embeddings