sentence_prediction_dataloader.py 2.98 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Loads dataset for the sentence prediction (classification) task."""
from typing import Mapping, Optional
Chen Chen's avatar
Chen Chen committed
18
import dataclasses
19
20
21
import tensorflow as tf

from official.core import input_reader
Chen Chen's avatar
Chen Chen committed
22
23
from official.modeling.hyperparams import config_definitions as cfg
from official.nlp.data import data_loader_factory
24
25


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
26
27
28
LABEL_TYPES_MAP = {'int': tf.int64, 'float': tf.float32}


Chen Chen's avatar
Chen Chen committed
29
30
31
32
33
34
35
@dataclasses.dataclass
class SentencePredictionDataConfig(cfg.DataConfig):
  """Data config for sentence prediction task (tasks/sentence_prediction)."""
  input_path: str = ''
  global_batch_size: int = 32
  is_training: bool = True
  seq_length: int = 128
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
36
  label_type: str = 'int'
Chen Chen's avatar
Chen Chen committed
37
38
39


@data_loader_factory.register_data_loader_cls(SentencePredictionDataConfig)
40
41
42
43
44
45
46
47
48
class SentencePredictionDataLoader:
  """A class to load dataset for sentence prediction (classification) task."""

  def __init__(self, params):
    self._params = params
    self._seq_length = params.seq_length

  def _decode(self, record: tf.Tensor):
    """Decodes a serialized tf.Example."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
49
    label_type = LABEL_TYPES_MAP[self._params.label_type]
50
51
52
53
    name_to_features = {
        'input_ids': tf.io.FixedLenFeature([self._seq_length], tf.int64),
        'input_mask': tf.io.FixedLenFeature([self._seq_length], tf.int64),
        'segment_ids': tf.io.FixedLenFeature([self._seq_length], tf.int64),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
54
        'label_ids': tf.io.FixedLenFeature([], label_type),
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
    }
    example = tf.io.parse_single_example(record, name_to_features)

    # tf.Example only supports tf.int64, but the TPU only supports tf.int32.
    # So cast all int64 to int32.
    for name in example:
      t = example[name]
      if t.dtype == tf.int64:
        t = tf.cast(t, tf.int32)
      example[name] = t

    return example

  def _parse(self, record: Mapping[str, tf.Tensor]):
    """Parses raw tensors into a dict of tensors to be consumed by the model."""
    x = {
        'input_word_ids': record['input_ids'],
        'input_mask': record['input_mask'],
        'input_type_ids': record['segment_ids']
    }
    y = record['label_ids']
    return (x, y)

  def load(self, input_context: Optional[tf.distribute.InputContext] = None):
    """Returns a tf.dataset.Dataset."""
    reader = input_reader.InputReader(
        params=self._params, decoder_fn=self._decode, parser_fn=self._parse)
    return reader.read(input_context)