pretrain_dataloader.py 4.11 KB
Newer Older
Hongkun Yu's avatar
Hongkun Yu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Loads dataset for the BERT pretraining task."""
from typing import Mapping, Optional

Chen Chen's avatar
Chen Chen committed
19
import dataclasses
Hongkun Yu's avatar
Hongkun Yu committed
20
21
22
import tensorflow as tf

from official.core import input_reader
Chen Chen's avatar
Chen Chen committed
23
24
from official.modeling.hyperparams import config_definitions as cfg
from official.nlp.data import data_loader_factory
Hongkun Yu's avatar
Hongkun Yu committed
25
26


Chen Chen's avatar
Chen Chen committed
27
28
29
30
31
32
33
34
35
36
37
38
39
@dataclasses.dataclass
class BertPretrainDataConfig(cfg.DataConfig):
  """Data config for BERT pretraining task (tasks/masked_lm)."""
  input_path: str = ''
  global_batch_size: int = 512
  is_training: bool = True
  seq_length: int = 512
  max_predictions_per_seq: int = 76
  use_next_sentence_label: bool = True
  use_position_id: bool = False


@data_loader_factory.register_data_loader_cls(BertPretrainDataConfig)
Hongkun Yu's avatar
Hongkun Yu committed
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
class BertPretrainDataLoader:
  """A class to load dataset for bert pretraining task."""

  def __init__(self, params):
    """Inits `BertPretrainDataLoader` class.

    Args:
      params: A `BertPretrainDataConfig` object.
    """
    self._params = params
    self._seq_length = params.seq_length
    self._max_predictions_per_seq = params.max_predictions_per_seq
    self._use_next_sentence_label = params.use_next_sentence_label
    self._use_position_id = params.use_position_id

  def _decode(self, record: tf.Tensor):
    """Decodes a serialized tf.Example."""
    name_to_features = {
        'input_ids':
            tf.io.FixedLenFeature([self._seq_length], tf.int64),
        'input_mask':
            tf.io.FixedLenFeature([self._seq_length], tf.int64),
        'segment_ids':
            tf.io.FixedLenFeature([self._seq_length], tf.int64),
        'masked_lm_positions':
            tf.io.FixedLenFeature([self._max_predictions_per_seq], tf.int64),
        'masked_lm_ids':
            tf.io.FixedLenFeature([self._max_predictions_per_seq], tf.int64),
        'masked_lm_weights':
            tf.io.FixedLenFeature([self._max_predictions_per_seq], tf.float32),
    }
    if self._use_next_sentence_label:
      name_to_features['next_sentence_labels'] = tf.io.FixedLenFeature([1],
                                                                       tf.int64)
    if self._use_position_id:
      name_to_features['position_ids'] = tf.io.FixedLenFeature(
          [self._seq_length], tf.int64)

    example = tf.io.parse_single_example(record, name_to_features)

    # tf.Example only supports tf.int64, but the TPU only supports tf.int32.
    # So cast all int64 to int32.
    for name in list(example.keys()):
      t = example[name]
      if t.dtype == tf.int64:
        t = tf.cast(t, tf.int32)
      example[name] = t

    return example

  def _parse(self, record: Mapping[str, tf.Tensor]):
    """Parses raw tensors into a dict of tensors to be consumed by the model."""
    x = {
        'input_word_ids': record['input_ids'],
        'input_mask': record['input_mask'],
        'input_type_ids': record['segment_ids'],
        'masked_lm_positions': record['masked_lm_positions'],
        'masked_lm_ids': record['masked_lm_ids'],
        'masked_lm_weights': record['masked_lm_weights'],
    }
    if self._use_next_sentence_label:
      x['next_sentence_labels'] = record['next_sentence_labels']
    if self._use_position_id:
      x['position_ids'] = record['position_ids']

    return x

  def load(self, input_context: Optional[tf.distribute.InputContext] = None):
    """Returns a tf.dataset.Dataset."""
    reader = input_reader.InputReader(
Chen Chen's avatar
Chen Chen committed
110
        params=self._params, decoder_fn=self._decode, parser_fn=self._parse)
Hongkun Yu's avatar
Hongkun Yu committed
111
    return reader.read(input_context)