fine_tuning_bert.ipynb 53.3 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
2
3
4
5
{
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
Chen Chen's avatar
Chen Chen committed
6
        "colab_type": "text",
7
        "id": "vXLA5InzXydn"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
8
9
      },
      "source": [
10
11
12
13
14
        "##### Copyright 2019 The TensorFlow Authors."
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
15
      "execution_count": null,
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
      "metadata": {
        "cellView": "form",
        "colab": {},
        "colab_type": "code",
        "id": "RuRlpLL-X0R_"
      },
      "outputs": [],
      "source": [
        "#@title Licensed under the Apache License, Version 2.0 (the \"License\");\n",
        "# you may not use this file except in compliance with the License.\n",
        "# You may obtain a copy of the License at\n",
        "#\n",
        "# https://www.apache.org/licenses/LICENSE-2.0\n",
        "#\n",
        "# Unless required by applicable law or agreed to in writing, software\n",
        "# distributed under the License is distributed on an \"AS IS\" BASIS,\n",
        "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n",
        "# See the License for the specific language governing permissions and\n",
        "# limitations under the License."
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
35
36
37
38
39
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
Chen Chen's avatar
Chen Chen committed
40
        "colab_type": "text",
41
        "id": "1mLJmVotXs64"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
42
43
      },
      "source": [
44
        "# Fine-tuning a BERT model"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
45
46
47
48
49
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
Chen Chen's avatar
Chen Chen committed
50
        "colab_type": "text",
51
        "id": "hYEwGTeCXnnX"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
52
53
      },
      "source": [
54
55
56
57
58
59
60
61
62
63
64
65
66
67
        "\u003ctable class=\"tfo-notebook-buttons\" align=\"left\"\u003e\n",
        "  \u003ctd\u003e\n",
        "    \u003ca target=\"_blank\" href=\"https://www.tensorflow.org/official_models/tutorials/fine_tune_bert.ipynb\"\u003e\u003cimg src=\"https://www.tensorflow.org/images/tf_logo_32px.png\" /\u003eView on TensorFlow.org\u003c/a\u003e\n",
        "  \u003c/td\u003e\n",
        "  \u003ctd\u003e\n",
        "    \u003ca target=\"_blank\" href=\"https://colab.research.google.com/github/tensorflow/models/blob/master/official/colab/fine_tuning_bert.ipynb\"\u003e\u003cimg src=\"https://www.tensorflow.org/images/colab_logo_32px.png\" /\u003eRun in Google Colab\u003c/a\u003e\n",
        "  \u003c/td\u003e\n",
        "  \u003ctd\u003e\n",
        "    \u003ca target=\"_blank\" href=\"https://github.com/tensorflow/models/blob/master/official/colab/fine_tuning_bert.ipynb\"\u003e\u003cimg src=\"https://www.tensorflow.org/images/GitHub-Mark-32px.png\" /\u003eView source on GitHub\u003c/a\u003e\n",
        "  \u003c/td\u003e\n",
        "  \u003ctd\u003e\n",
        "    \u003ca href=\"https://storage.googleapis.com/tensorflow_docs/models/official/colab/fine_tuning_bert.ipynb\"\u003e\u003cimg src=\"https://www.tensorflow.org/images/download_logo_32px.png\" /\u003eDownload notebook\u003c/a\u003e\n",
        "  \u003c/td\u003e\n",
        "\u003c/table\u003e"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
68
69
70
71
72
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
Chen Chen's avatar
Chen Chen committed
73
        "colab_type": "text",
74
        "id": "YN2ACivEPxgD"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
75
76
      },
      "source": [
77
78
79
        "In this example, we will work through fine-tuning a BERT model using the tensorflow-models PIP package.\n",
        "\n",
        "The pretrained BERT model this tutorial is based on is also available on [TensorFlow Hub](https://tensorflow.org/hub), to see how to use it refer to the [Hub Appendix](#hub_bert)"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
80
81
82
83
84
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
Chen Chen's avatar
Chen Chen committed
85
86
        "colab_type": "text",
        "id": "s2d9S2CSSO1z"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
87
88
      },
      "source": [
89
        "## Setup"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
90
91
92
93
94
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
Chen Chen's avatar
Chen Chen committed
95
96
        "colab_type": "text",
        "id": "fsACVQpVSifi"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
97
98
99
100
      },
      "source": [
        "### Install the TensorFlow Model Garden pip package\n",
        "\n",
101
        "*  `tf-models-nightly` is the nightly Model Garden package created daily automatically.\n",
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
102
103
104
105
106
        "*  pip will install all models and dependencies automatically."
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
107
      "execution_count": null,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
108
      "metadata": {
Chen Chen's avatar
Chen Chen committed
109
        "colab": {},
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
110
        "colab_type": "code",
Chen Chen's avatar
Chen Chen committed
111
        "id": "NvNr2svBM-p3"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
112
      },
Chen Chen's avatar
Chen Chen committed
113
      "outputs": [],
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
114
      "source": [
115
116
        "!pip install -q tf-nightly\n",
        "!pip install -q tf-models-nightly"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
117
118
119
120
121
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
Chen Chen's avatar
Chen Chen committed
122
123
        "colab_type": "text",
        "id": "U-7qPCjWUAyy"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
124
125
      },
      "source": [
126
        "### Imports"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
127
128
129
130
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
131
      "execution_count": null,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
132
      "metadata": {
Chen Chen's avatar
Chen Chen committed
133
        "colab": {},
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
134
        "colab_type": "code",
Chen Chen's avatar
Chen Chen committed
135
        "id": "lXsXev5MNr20"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
136
      },
Chen Chen's avatar
Chen Chen committed
137
      "outputs": [],
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
138
      "source": [
Chen Chen's avatar
Chen Chen committed
139
        "import os\n",
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
140
        "\n",
Chen Chen's avatar
Chen Chen committed
141
        "import numpy as np\n",
142
143
        "import matplotlib.pyplot as plt\n",
        "\n",
Chen Chen's avatar
Chen Chen committed
144
145
        "import tensorflow as tf\n",
        "\n",
146
147
148
149
        "import tensorflow_hub as hub\n",
        "import tensorflow_datasets as tfds\n",
        "tfds.disable_progress_bar()\n",
        "\n",
Chen Chen's avatar
Chen Chen committed
150
        "from official.modeling import tf_utils\n",
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
        "from official import nlp\n",
        "from official.nlp import bert\n",
        "\n",
        "# Load the required submodules\n",
        "import official.nlp.optimization\n",
        "import official.nlp.bert.bert_models\n",
        "import official.nlp.bert.configs\n",
        "import official.nlp.bert.run_classifier\n",
        "import official.nlp.bert.tokenization\n",
        "import official.nlp.data.classifier_data_lib\n",
        "import official.nlp.modeling.losses\n",
        "import official.nlp.modeling.models\n",
        "import official.nlp.modeling.networks"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "mbanlzTvJBsz"
      },
      "source": [
        "### Resources"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "PpW0x8TpR8DT"
      },
      "source": [
        "This directory contains the configuration, vocabulary, and a pre-trained checkpoint used in this tutorial:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
188
      "execution_count": null,
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "vzRHOLciR8eq"
      },
      "outputs": [],
      "source": [
        "gs_folder_bert = \"gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-12_H-768_A-12\"\n",
        "tf.io.gfile.listdir(gs_folder_bert)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "9uFskufsR2LT"
      },
      "source": [
Mark Daoust's avatar
Mark Daoust committed
207
        "You can get a pre-trained BERT encoder from [TensorFlow Hub](https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/2):"
208
209
210
211
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
212
      "execution_count": null,
213
214
215
216
217
218
219
220
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "e0dAkUttJAzj"
      },
      "outputs": [],
      "source": [
        "hub_url_bert = \"https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/2\""
Chen Chen's avatar
Chen Chen committed
221
      ]
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
222
223
224
225
    },
    {
      "cell_type": "markdown",
      "metadata": {
Chen Chen's avatar
Chen Chen committed
226
        "colab_type": "text",
227
        "id": "Qv6abtRvH4xO"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
228
229
      },
      "source": [
230
231
232
233
        "## The data\n",
        "For this example we used the [GLUE MRPC dataset from TFDS](https://www.tensorflow.org/datasets/catalog/glue#gluemrpc).\n",
        "\n",
        "This dataset is not set up so that it can be directly fed into the BERT model, so this section also handles the necessary preprocessing."
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
234
235
236
237
238
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
Chen Chen's avatar
Chen Chen committed
239
        "colab_type": "text",
240
        "id": "28DvUhC1YUiB"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
241
242
      },
      "source": [
243
        "### Get the dataset from TensorFlow Datasets\n",
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
244
        "\n",
Chen Chen's avatar
Chen Chen committed
245
        "The Microsoft Research Paraphrase Corpus (Dolan \u0026 Brockett, 2005) is a corpus of sentence pairs automatically extracted from online news sources, with human annotations for whether the sentences in the pair are semantically equivalent.\n",
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
246
247
248
249
        "\n",
        "*   Number of labels: 2.\n",
        "*   Size of training dataset: 3668.\n",
        "*   Size of evaluation dataset: 408.\n",
250
251
252
253
254
        "*   Maximum sequence length of training and evaluation dataset: 128.\n"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
255
      "execution_count": null,
256
257
258
259
260
261
262
263
264
265
266
267
268
269
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "Ijikx5OsH9AT"
      },
      "outputs": [],
      "source": [
        "glue, info = tfds.load('glue/mrpc', with_info=True,\n",
        "                       # It's small, load the whole dataset\n",
        "                       batch_size=-1)"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
270
      "execution_count": null,
271
272
273
274
275
276
277
278
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "xf9zz4vLYXjr"
      },
      "outputs": [],
      "source": [
        "list(glue.keys())"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
279
280
281
282
283
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
Chen Chen's avatar
Chen Chen committed
284
        "colab_type": "text",
285
        "id": "ZgBg2r2nYT-K"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
286
287
      },
      "source": [
288
289
290
291
292
        "The `info` object describes the dataset and it's features:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
293
      "execution_count": null,
294
295
296
297
298
299
300
301
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "IQrHxv7W7jH5"
      },
      "outputs": [],
      "source": [
        "info.features"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
302
303
304
305
306
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
Chen Chen's avatar
Chen Chen committed
307
        "colab_type": "text",
308
        "id": "vhsVWYNxazz5"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
309
310
      },
      "source": [
311
        "The two classes are:"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
312
313
314
315
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
316
      "execution_count": null,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
317
      "metadata": {
Chen Chen's avatar
Chen Chen committed
318
        "colab": {},
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
319
        "colab_type": "code",
320
        "id": "n0gfc_VTayfQ"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
321
      },
Chen Chen's avatar
Chen Chen committed
322
      "outputs": [],
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
323
      "source": [
324
        "info.features['label'].names"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
325
326
327
328
329
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
Chen Chen's avatar
Chen Chen committed
330
        "colab_type": "text",
331
        "id": "38zJcap6xkbC"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
332
333
      },
      "source": [
334
        "Here is one example from the training set:"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
335
336
337
338
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
339
      "execution_count": null,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
340
      "metadata": {
Chen Chen's avatar
Chen Chen committed
341
        "colab": {},
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
342
        "colab_type": "code",
343
        "id": "xON_i6SkwApW"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
344
      },
Chen Chen's avatar
Chen Chen committed
345
      "outputs": [],
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
346
      "source": [
347
        "glue_train = glue['train']\n",
Chen Chen's avatar
Chen Chen committed
348
        "\n",
349
350
        "for key, value in glue_train.items():\n",
        "  print(f\"{key:9s}: {value[0].numpy()}\")"
Chen Chen's avatar
Chen Chen committed
351
      ]
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
352
353
354
355
    },
    {
      "cell_type": "markdown",
      "metadata": {
Chen Chen's avatar
Chen Chen committed
356
        "colab_type": "text",
357
        "id": "9fbTyfJpNr7x"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
358
359
      },
      "source": [
360
        "### The BERT tokenizer"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
361
362
363
364
365
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
Chen Chen's avatar
Chen Chen committed
366
        "colab_type": "text",
367
        "id": "wqeN54S61ZKQ"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
368
369
      },
      "source": [
370
        "To fine tune a pre-trained model you need to be sure that you're using exactly the same tokenization, vocabulary, and index mapping as you used during training.\n",
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
371
        "\n",
372
373
374
        "The BERT tokenizer used in this tutorial is written in pure Python (It's not built out of TensorFlow ops). So you can't just plug it into your model as a `keras.layer` like you can with `preprocessing.TextVectorization`.\n",
        "\n",
        "The following code rebuilds the tokenizer that was used by the base model:"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
375
376
377
378
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
379
      "execution_count": null,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
380
      "metadata": {
Chen Chen's avatar
Chen Chen committed
381
        "colab": {},
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
382
        "colab_type": "code",
383
        "id": "idxyhmrCQcw5"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
384
      },
Chen Chen's avatar
Chen Chen committed
385
      "outputs": [],
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
386
      "source": [
387
388
389
390
391
392
        "# Set up tokenizer to generate Tensorflow dataset\n",
        "tokenizer = bert.tokenization.FullTokenizer(\n",
        "    vocab_file=os.path.join(gs_folder_bert, \"vocab.txt\"),\n",
        "     do_lower_case=True)\n",
        "\n",
        "print(\"Vocab size:\", len(tokenizer.vocab))"
Chen Chen's avatar
Chen Chen committed
393
394
395
396
397
398
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
399
        "id": "zYHDSquU2lDU"
Chen Chen's avatar
Chen Chen committed
400
401
      },
      "source": [
402
        "Tokenize a sentence:"
Chen Chen's avatar
Chen Chen committed
403
404
405
406
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
407
      "execution_count": null,
Chen Chen's avatar
Chen Chen committed
408
409
410
      "metadata": {
        "colab": {},
        "colab_type": "code",
411
        "id": "L_OfOYPg853R"
Chen Chen's avatar
Chen Chen committed
412
413
414
      },
      "outputs": [],
      "source": [
415
416
417
418
        "tokens = tokenizer.tokenize(\"Hello TensorFlow!\")\n",
        "print(tokens)\n",
        "ids = tokenizer.convert_tokens_to_ids(tokens)\n",
        "print(ids)"
Chen Chen's avatar
Chen Chen committed
419
      ]
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
420
421
422
423
    },
    {
      "cell_type": "markdown",
      "metadata": {
Chen Chen's avatar
Chen Chen committed
424
        "colab_type": "text",
425
        "id": "kkAXLtuyWWDI"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
426
427
      },
      "source": [
428
        "### Preprocess the data\n",
Chen Chen's avatar
Chen Chen committed
429
        "\n",
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
        "The section manually preprocessed the dataset into the format expected by the model.\n",
        "\n",
        "This dataset is small, so preprocessing can be done quickly and easily in memory. For larger datasets the `tf_models` library includes some tools for preprocessing and re-serializing a dataset. See [Appendix: Re-encoding a large dataset](#re_encoding_tools) for details."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "62UTWLQd9-LB"
      },
      "source": [
        "#### Encode the sentences\n",
        "\n",
        "The model expects its two inputs sentences to be concatenated together. This input is expected to start with a `[CLS]` \"This is a classification problem\" token, and each sentence should end with a `[SEP]` \"Separator\" token:"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
445
446
447
448
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
449
      "execution_count": null,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
450
      "metadata": {
Chen Chen's avatar
Chen Chen committed
451
        "colab": {},
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
452
        "colab_type": "code",
453
        "id": "bdL-dRNRBRJT"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
454
      },
Chen Chen's avatar
Chen Chen committed
455
      "outputs": [],
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
456
      "source": [
457
        "tokenizer.convert_tokens_to_ids(['[CLS]', '[SEP]'])"
Chen Chen's avatar
Chen Chen committed
458
      ]
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
459
460
461
462
    },
    {
      "cell_type": "markdown",
      "metadata": {
Chen Chen's avatar
Chen Chen committed
463
        "colab_type": "text",
464
        "id": "UrPktnqpwqie"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
465
466
      },
      "source": [
467
        "Start by encoding all the sentences while appending a `[SEP]` token, and packing them into ragged-tensors:"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
468
469
470
471
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
472
      "execution_count": null,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
473
      "metadata": {
Chen Chen's avatar
Chen Chen committed
474
        "colab": {},
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
475
        "colab_type": "code",
476
        "id": "BR7BmtU498Bh"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
477
      },
Chen Chen's avatar
Chen Chen committed
478
      "outputs": [],
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
479
      "source": [
480
481
482
483
        "def encode_sentence(s):\n",
        "   tokens = list(tokenizer.tokenize(s.numpy()))\n",
        "   tokens.append('[SEP]')\n",
        "   return tokenizer.convert_tokens_to_ids(tokens)\n",
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
484
        "\n",
485
486
487
488
489
490
491
492
        "sentence1 = tf.ragged.constant([\n",
        "    encode_sentence(s) for s in glue_train[\"sentence1\"]])\n",
        "sentence2 = tf.ragged.constant([\n",
        "    encode_sentence(s) for s in glue_train[\"sentence2\"]])"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
493
      "execution_count": null,
494
495
496
497
498
499
500
501
502
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "has42aUdfky-"
      },
      "outputs": [],
      "source": [
        "print(\"Sentence1 shape:\", sentence1.shape.as_list())\n",
        "print(\"Sentence2 shape:\", sentence2.shape.as_list())"
Chen Chen's avatar
Chen Chen committed
503
504
505
506
507
508
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
509
        "id": "MU9lTWy_xXbb"
Chen Chen's avatar
Chen Chen committed
510
511
      },
      "source": [
512
        "Now prepend a `[CLS]` token, and concatenate the ragged tensors to form a single `input_word_ids` tensor for each example. `RaggedTensor.to_tensor()` zero pads to the longest sequence."
Chen Chen's avatar
Chen Chen committed
513
514
515
516
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
517
      "execution_count": null,
Chen Chen's avatar
Chen Chen committed
518
519
520
      "metadata": {
        "colab": {},
        "colab_type": "code",
521
        "id": "USD8uihw-g4J"
Chen Chen's avatar
Chen Chen committed
522
523
524
      },
      "outputs": [],
      "source": [
525
526
527
        "cls = [tokenizer.convert_tokens_to_ids(['[CLS]'])]*sentence1.shape[0]\n",
        "input_word_ids = tf.concat([cls, sentence1, sentence2], axis=-1)\n",
        "_ = plt.pcolormesh(input_word_ids.to_tensor())"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
528
529
530
531
532
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
Chen Chen's avatar
Chen Chen committed
533
        "colab_type": "text",
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
        "id": "xmNv4l4k-dBZ"
      },
      "source": [
        "#### Mask and input type"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "DIWjNIKq-ldh"
      },
      "source": [
        "The model expects two additional inputs:\n",
        "\n",
        "* The input mask\n",
        "* The input type"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "ulNZ4U96-8JZ"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
558
559
      },
      "source": [
560
        "The mask allows the model to cleanly differentiate between the content and the padding. The mask has the same shape as the `input_word_ids`, and contains a `1` anywhere the `input_word_ids` is not padding."
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
561
562
563
564
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
565
      "execution_count": null,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
566
      "metadata": {
Chen Chen's avatar
Chen Chen committed
567
        "colab": {},
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
568
        "colab_type": "code",
569
        "id": "EezOO9qj91kP"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
570
      },
Chen Chen's avatar
Chen Chen committed
571
      "outputs": [],
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
572
      "source": [
573
574
575
        "input_mask = tf.ones_like(input_word_ids).to_tensor()\n",
        "\n",
        "plt.pcolormesh(input_mask)"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
576
577
578
579
580
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
Chen Chen's avatar
Chen Chen committed
581
        "colab_type": "text",
582
        "id": "rxLenwAvCkBf"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
583
584
      },
      "source": [
585
        "The \"input type\" also has the same shape, but inside the non-padded region, contains a `0` or a `1` indicating which sentence the token is a part of. "
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
586
587
588
589
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
590
      "execution_count": null,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
591
      "metadata": {
Chen Chen's avatar
Chen Chen committed
592
        "colab": {},
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
593
        "colab_type": "code",
594
        "id": "2CetH_5C9P2m"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
595
      },
Chen Chen's avatar
Chen Chen committed
596
      "outputs": [],
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
597
      "source": [
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
        "type_cls = tf.zeros_like(cls)\n",
        "type_s1 = tf.zeros_like(sentence1)\n",
        "type_s2 = tf.ones_like(sentence2)\n",
        "input_type_ids = tf.concat([type_cls, type_s1, type_s2], axis=-1).to_tensor()\n",
        "\n",
        "plt.pcolormesh(input_type_ids)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "P5UBnCn8Ii6s"
      },
      "source": [
        "#### Put it all together\n",
        "\n",
        "Collect the above text parsing code into a single function, and apply it to each split of the `glue/mrpc` dataset."
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
620
      "execution_count": null,
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "sDGiWYPLEd5a"
      },
      "outputs": [],
      "source": [
        "def encode_sentence(s, tokenizer):\n",
        "   tokens = list(tokenizer.tokenize(s))\n",
        "   tokens.append('[SEP]')\n",
        "   return tokenizer.convert_tokens_to_ids(tokens)\n",
        "\n",
        "def bert_encode(glue_dict, tokenizer):\n",
        "  num_examples = len(glue_dict[\"sentence1\"])\n",
        "  \n",
        "  sentence1 = tf.ragged.constant([\n",
        "      encode_sentence(s, tokenizer)\n",
        "      for s in np.array(glue_dict[\"sentence1\"])])\n",
        "  sentence2 = tf.ragged.constant([\n",
        "      encode_sentence(s, tokenizer)\n",
        "       for s in np.array(glue_dict[\"sentence2\"])])\n",
        "\n",
        "  cls = [tokenizer.convert_tokens_to_ids(['[CLS]'])]*sentence1.shape[0]\n",
        "  input_word_ids = tf.concat([cls, sentence1, sentence2], axis=-1)\n",
        "\n",
        "  input_mask = tf.ones_like(input_word_ids).to_tensor()\n",
        "\n",
        "  type_cls = tf.zeros_like(cls)\n",
        "  type_s1 = tf.zeros_like(sentence1)\n",
        "  type_s2 = tf.ones_like(sentence2)\n",
        "  input_type_ids = tf.concat(\n",
        "      [type_cls, type_s1, type_s2], axis=-1).to_tensor()\n",
        "\n",
        "  inputs = {\n",
        "      'input_word_ids': input_word_ids.to_tensor(),\n",
        "      'input_mask': input_mask,\n",
        "      'input_type_ids': input_type_ids}\n",
        "\n",
        "  return inputs"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
664
      "execution_count": null,
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "yuLKxf6zHxw-"
      },
      "outputs": [],
      "source": [
        "glue_train = bert_encode(glue['train'], tokenizer)\n",
        "glue_train_labels = glue['train']['label']\n",
        "\n",
        "glue_validation = bert_encode(glue['validation'], tokenizer)\n",
        "glue_validation_labels = glue['validation']['label']\n",
        "\n",
        "glue_test = bert_encode(glue['test'], tokenizer)\n",
        "glue_test_labels  = glue['test']['label']"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "7FC5aLVxKVKK"
      },
      "source": [
        "Each subset of the data has been converted to a dictionary of features, and a set of labels. Each feature in the input dictionary has the same shape, and the number of labels should match:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
694
      "execution_count": null,
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "jyjTdGpFhO_1"
      },
      "outputs": [],
      "source": [
        "for key, value in glue_train.items():\n",
        "  print(f'{key:15s} shape: {value.shape}')\n",
        "\n",
        "print(f'glue_train_labels shape: {glue_train_labels.shape}')"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "FSwymsbkbLDA"
      },
      "source": [
        "## The model"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "Efrj3Cn1kLAp"
      },
      "source": [
        "### Build the model\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "xxpOY5r2Ayq6"
      },
      "source": [
        "The first step is to download the configuration  for the pre-trained model.\n"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
740
      "execution_count": null,
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "ujapVfZ_AKW7"
      },
      "outputs": [],
      "source": [
        "import json\n",
        "\n",
        "bert_config_file = os.path.join(gs_folder_bert, \"bert_config.json\")\n",
        "config_dict = json.loads(tf.io.gfile.GFile(bert_config_file).read())\n",
        "\n",
        "bert_config = bert.configs.BertConfig.from_dict(config_dict)\n",
        "\n",
        "config_dict"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "96ldxDSwkVkj"
      },
      "source": [
        "The `config` defines the core BERT Model, which is a Keras model to predict the outputs of `num_classes` from the inputs with maximum sequence length `max_seq_length`.\n",
        "\n",
        "This function returns both the encoder and the classifier."
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
772
      "execution_count": null,
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "cH682__U0FBv"
      },
      "outputs": [],
      "source": [
        "bert_classifier, bert_encoder = bert.bert_models.classifier_model(\n",
        "    bert_config, num_labels=2)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "XqKp3-5GIZlw"
      },
      "source": [
        "The classifier has three inputs and one output:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
796
      "execution_count": null,
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "bAQblMIjwkvx"
      },
      "outputs": [],
      "source": [
        "tf.keras.utils.plot_model(bert_classifier, show_shapes=True, dpi=48)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "sFmVG4SKZAw8"
      },
      "source": [
        "Run it on a test batch of data 10 examples from the training set. The output is the logits for the two classes:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
819
      "execution_count": null,
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "VTjgPbp4ZDKo"
      },
      "outputs": [],
      "source": [
        "glue_batch = {key: val[:10] for key, val in glue_train.items()}\n",
        "\n",
        "bert_classifier(\n",
        "    glue_batch, training=True\n",
        ").numpy()"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "Q0NTdwZsQK8n"
      },
      "source": [
        "The `TransformerEncoder` in the center of the classifier above **is** the `bert_encoder`.\n",
        "\n",
        "Inspecting the encoder, we see its stack of `Transformer` layers connected to those same three inputs:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
848
      "execution_count": null,
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "8L__-erBwLIQ"
      },
      "outputs": [],
      "source": [
        "tf.keras.utils.plot_model(bert_encoder, show_shapes=True, dpi=48)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "mKAvkQc3heSy"
      },
      "source": [
        "### Restore the encoder weights\n",
        "\n",
        "When built the encoder is randomly initialized. Restore the encoder's weights from the checkpoint:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
873
      "execution_count": null,
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "97Ll2Gichd_Y"
      },
      "outputs": [],
      "source": [
        "checkpoint = tf.train.Checkpoint(model=bert_encoder)\n",
        "checkpoint.restore(\n",
        "    os.path.join(gs_folder_bert, 'bert_model.ckpt')).assert_consumed()"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "2oHOql35k3Dd"
      },
      "source": [
        "Note: The pretrained `TransformerEncoder` is also available on [TensorFlow Hub](https://tensorflow.org/hub). See the [Hub appendix](#hub_bert) for details. "
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "115caFLMk-_l"
      },
      "source": [
        "### Set up the optimizer\n",
        "\n",
        "BERT adopts the Adam optimizer with weight decay (aka \"[AdamW](https://arxiv.org/abs/1711.05101)\").\n",
        "It also employs a learning rate schedule that firstly warms up from 0 and then decays to 0."
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
911
      "execution_count": null,
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "w8qXKRZuCwW4"
      },
      "outputs": [],
      "source": [
        "# Set up epochs and steps\n",
        "epochs = 3\n",
        "batch_size = 32\n",
        "eval_batch_size = 32\n",
        "\n",
        "train_data_size = len(glue_train_labels)\n",
        "steps_per_epoch = int(train_data_size / batch_size)\n",
        "num_train_steps = steps_per_epoch * epochs\n",
        "warmup_steps = int(epochs * train_data_size * 0.1 / batch_size)\n",
        "\n",
        "# creates an optimizer with learning rate schedule\n",
        "optimizer = nlp.optimization.create_optimizer(\n",
        "    2e-5, num_train_steps=num_train_steps, num_warmup_steps=warmup_steps)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "pXRGxiRNEHS2"
      },
      "source": [
        "This returns an `AdamWeightDecay`  optimizer with the learning rate schedule set:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
946
      "execution_count": null,
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "eQNA16bhDpky"
      },
      "outputs": [],
      "source": [
        "type(optimizer)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "xqu_K71fJQB8"
      },
      "source": [
        "To see an example of how to customize the optimizer and it's schedule, see the [Optimizer schedule appendix](#optiizer_schedule)."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "78FEUOOEkoP0"
      },
      "source": [
        "### Train the model"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "OTNcA0O0nSq9"
      },
      "source": [
        "The metric is accuracy and we use sparse categorical cross-entropy as loss."
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
989
      "execution_count": null,
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "nzi8hjeTQTRs"
      },
      "outputs": [],
      "source": [
        "metrics = [tf.keras.metrics.SparseCategoricalAccuracy('accuracy', dtype=tf.float32)]\n",
        "loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)\n",
        "\n",
        "bert_classifier.compile(\n",
        "    optimizer=optimizer,\n",
        "    loss=loss,\n",
        "    metrics=metrics)\n",
        "\n",
        "bert_classifier.fit(\n",
        "      glue_train, glue_train_labels,\n",
        "      validation_data=(glue_validation, glue_validation_labels),\n",
        "      batch_size=32,\n",
        "      epochs=epochs)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "IFtKFWbNKb0u"
      },
      "source": [
        "Now run the fine-tuned model on a custom example to see that it works.\n",
        "\n",
        "Start by encoding some sentence pairs:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1026
      "execution_count": null,
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "9ZoUgDUNJPz3"
      },
      "outputs": [],
      "source": [
        "my_examples = bert_encode(\n",
        "    glue_dict = {\n",
        "        'sentence1':[\n",
        "            'The rain in Spain falls mainly on the plain.',\n",
        "            'Look I fine tuned BERT.'],\n",
        "        'sentence2':[\n",
        "            'It mostly rains on the flat lands of Spain.',\n",
        "            'Is it working? This does not match.']\n",
        "    },\n",
        "    tokenizer=tokenizer)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "7ynJibkBRTJF"
      },
      "source": [
        "The model should report class `1` \"match\" for the first example and class `0` \"no-match\" for the second:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1058
      "execution_count": null,
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "umo0ttrgRYIM"
      },
      "outputs": [],
      "source": [
        "result = bert_classifier(my_examples, training=False)\n",
        "\n",
        "result = tf.argmax(result).numpy()\n",
        "result"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1074
      "execution_count": null,
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "utGl0M3aZCE4"
      },
      "outputs": [],
      "source": [
        "np.array(info.features['label'].names)[result]"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "fVo_AnT0l26j"
      },
      "source": [
        "### Save the model\n",
        "\n",
        "Often the goal of training a model is to _use_ it for something, so export the model and then restore it to be sure that it works."
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1099
      "execution_count": null,
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "Nl5x6nElZqkP"
      },
      "outputs": [],
      "source": [
        "export_dir='./saved_model'\n",
        "tf.saved_model.save(bert_classifier, export_dir=export_dir)"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1113
      "execution_count": null,
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "y_ACvKPsVUXC"
      },
      "outputs": [],
      "source": [
        "reloaded = tf.saved_model.load(export_dir)\n",
        "reloaded_result = reloaded([my_examples['input_word_ids'],\n",
        "                            my_examples['input_mask'],\n",
        "                            my_examples['input_type_ids']], training=False)\n",
        "\n",
        "original_result = bert_classifier(my_examples, training=False)\n",
        "\n",
        "# The results are (nearly) identical:\n",
        "print(original_result.numpy())\n",
        "print()\n",
        "print(reloaded_result.numpy())"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "eQceYqRFT_Eg"
      },
      "source": [
        "## Appendix"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "SaC1RlFawUpc"
      },
      "source": [
        "\u003ca id=re_encoding_tools\u003e\u003c/a\u003e\n",
        "### Re-encoding a large dataset"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "CwUdjFBkzUgh"
      },
      "source": [
        "This tutorial you re-encoded the dataset in memory, for clarity.\n",
        "\n",
        "This was only possible because `glue/mrpc` is a very small dataset. To deal with larger datasets `tf_models` library includes some tools for processing and re-encoding a dataset for efficient training."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "2UTQrkyOT5wD"
      },
      "source": [
        "The first step is to describe which features of the dataset should be transformed:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1179
      "execution_count": null,
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "XQeDFOzYR9Z9"
      },
      "outputs": [],
      "source": [
        "processor = nlp.data.classifier_data_lib.TfdsProcessor(\n",
        "    tfds_params=\"dataset=glue/mrpc,text_key=sentence1,text_b_key=sentence2\",\n",
        "    process_text_fn=bert.tokenization.convert_to_unicode)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "XrFQbfErUWxa"
      },
      "source": [
        "Then apply the transformation to generate new TFRecord files."
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1204
      "execution_count": null,
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "ymw7GOHpSHKU"
      },
      "outputs": [],
      "source": [
        "# Set up output of training and evaluation Tensorflow dataset\n",
        "train_data_output_path=\"./mrpc_train.tf_record\"\n",
        "eval_data_output_path=\"./mrpc_eval.tf_record\"\n",
        "\n",
        "max_seq_length = 128\n",
        "batch_size = 32\n",
        "eval_batch_size = 32\n",
        "\n",
        "# Generate and save training data into a tf record file\n",
        "input_meta_data = (\n",
        "    nlp.data.classifier_data_lib.generate_tf_record_from_data_file(\n",
        "      processor=processor,\n",
        "      data_dir=None,  # It is `None` because data is from tfds, not local dir.\n",
        "      tokenizer=tokenizer,\n",
        "      train_data_output_path=train_data_output_path,\n",
        "      eval_data_output_path=eval_data_output_path,\n",
        "      max_seq_length=max_seq_length))"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "uX_Sp-wTUoRm"
      },
      "source": [
        "Finally create `tf.data` input pipelines from those TFRecord files:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1243
      "execution_count": null,
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "rkHxIK57SQ_r"
      },
      "outputs": [],
      "source": [
        "training_dataset = bert.run_classifier.get_dataset_fn(\n",
        "    train_data_output_path,\n",
        "    max_seq_length,\n",
        "    batch_size,\n",
        "    is_training=True)()\n",
        "\n",
        "evaluation_dataset = bert.run_classifier.get_dataset_fn(\n",
        "    eval_data_output_path,\n",
        "    max_seq_length,\n",
        "    eval_batch_size,\n",
        "    is_training=False)()\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "stbaVouogvzS"
      },
      "source": [
        "The resulting `tf.data.Datasets` return `(features, labels)` pairs, as expected by `keras.Model.fit`:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1276
      "execution_count": null,
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "gwhrlQl4gxVF"
      },
      "outputs": [],
      "source": [
        "training_dataset.element_spec"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "dbJ76vSJj77j"
      },
      "source": [
        "#### Create tf.data.Dataset for training and evaluation\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "9J95LFRohiYw"
      },
      "source": [
        "If you need to modify the data loading here is some code to get you started:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1309
      "execution_count": null,
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "gCvaLLAxPuMc"
      },
      "outputs": [],
      "source": [
        "def create_classifier_dataset(file_path, seq_length, batch_size, is_training):\n",
        "  \"\"\"Creates input dataset from (tf)records files for train/eval.\"\"\"\n",
        "  dataset = tf.data.TFRecordDataset(file_path)\n",
        "  if is_training:\n",
        "    dataset = dataset.shuffle(100)\n",
        "    dataset = dataset.repeat()\n",
        "\n",
        "  def decode_record(record):\n",
        "    name_to_features = {\n",
        "      'input_ids': tf.io.FixedLenFeature([seq_length], tf.int64),\n",
        "      'input_mask': tf.io.FixedLenFeature([seq_length], tf.int64),\n",
        "      'segment_ids': tf.io.FixedLenFeature([seq_length], tf.int64),\n",
        "      'label_ids': tf.io.FixedLenFeature([], tf.int64),\n",
        "    }\n",
        "    return tf.io.parse_single_example(record, name_to_features)\n",
        "\n",
        "  def _select_data_from_record(record):\n",
        "    x = {\n",
        "        'input_word_ids': record['input_ids'],\n",
        "        'input_mask': record['input_mask'],\n",
        "        'input_type_ids': record['segment_ids']\n",
        "    }\n",
        "    y = record['label_ids']\n",
        "    return (x, y)\n",
        "\n",
        "  dataset = dataset.map(decode_record,\n",
        "                        num_parallel_calls=tf.data.experimental.AUTOTUNE)\n",
        "  dataset = dataset.map(\n",
        "      _select_data_from_record,\n",
        "      num_parallel_calls=tf.data.experimental.AUTOTUNE)\n",
        "  dataset = dataset.batch(batch_size, drop_remainder=is_training)\n",
        "  dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE)\n",
        "  return dataset"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1354
      "execution_count": null,
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "rutkBadrhzdR"
      },
      "outputs": [],
      "source": [
        "# Set up batch sizes\n",
        "batch_size = 32\n",
        "eval_batch_size = 32\n",
        "\n",
        "# Return Tensorflow dataset\n",
        "training_dataset = create_classifier_dataset(\n",
        "    train_data_output_path,\n",
        "    input_meta_data['max_seq_length'],\n",
        "    batch_size,\n",
        "    is_training=True)\n",
        "\n",
        "evaluation_dataset = create_classifier_dataset(\n",
        "    eval_data_output_path,\n",
        "    input_meta_data['max_seq_length'],\n",
        "    eval_batch_size,\n",
        "    is_training=False)"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1382
      "execution_count": null,
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "59TVgt4Z7fuU"
      },
      "outputs": [],
      "source": [
        "training_dataset.element_spec"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "QbklKt-w_CiI"
      },
      "source": [
        "\u003ca id=\"hub_bert\"\u003e\u003c/a\u003e\n",
        "\n",
        "### TFModels BERT on TFHub\n",
        "\n",
        "You can get [the BERT model](https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/2) off the shelf from [TFHub](https://tensorflow.org/hub). It would not be hard to add a classification head on top of this `hub.KerasLayer`"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1409
      "execution_count": null,
1410
1411
1412
      "metadata": {
        "colab": {},
        "colab_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1413
        "id": "GDWrHm0BGpbX"
1414
1415
1416
1417
      },
      "outputs": [],
      "source": [
        "# Note: 350MB download.\n",
Mark Daoust's avatar
Mark Daoust committed
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
        "import tensorflow_hub as hub"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "cellView": "form",
        "colab": {},
        "colab_type": "code",
        "id": "Y29meH0qGq_5"
      },
      "outputs": [],
      "source": [
        "hub_model_name = \"bert_en_uncased_L-12_H-768_A-12\" #@param [\"bert_en_uncased_L-24_H-1024_A-16\", \"bert_en_wwm_cased_L-24_H-1024_A-16\", \"bert_en_uncased_L-12_H-768_A-12\", \"bert_en_wwm_uncased_L-24_H-1024_A-16\", \"bert_en_cased_L-24_H-1024_A-16\", \"bert_en_cased_L-12_H-768_A-12\", \"bert_zh_L-12_H-768_A-12\", \"bert_multi_cased_L-12_H-768_A-12\"]"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "lo6479At4sP1"
      },
      "outputs": [],
      "source": [
        "hub_encoder = hub.KerasLayer(f\"https://tfhub.dev/tensorflow/{hub_model_name}\",\n",
        "                             trainable=True)\n",
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
        "\n",
        "print(f\"The Hub encoder has {len(hub_encoder.trainable_variables)} trainable variables\")"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "iTzF574wivQv"
      },
      "source": [
        "Test run it on a batch of data:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1463
      "execution_count": null,
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "XEcYrCR45Uwo"
      },
      "outputs": [],
      "source": [
        "result = hub_encoder(\n",
        "    inputs=[glue_train['input_word_ids'][:10],\n",
        "            glue_train['input_mask'][:10],\n",
        "            glue_train['input_type_ids'][:10],],\n",
        "    training=False,\n",
        ")\n",
        "\n",
        "print(\"Pooled output shape:\", result[0].shape)\n",
        "print(\"Sequence output shape:\", result[1].shape)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "cjojn8SmLSRI"
      },
      "source": [
        "At this point it would be simple to add a classification head yourself.\n",
        "\n",
        "The `bert_models.classifier_model` function can also build a classifier onto the encoder from TensorFlow Hub:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1496
      "execution_count": null,
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "9nTDaApyLR70"
      },
      "outputs": [],
      "source": [
        "hub_classifier, hub_encoder = bert.bert_models.classifier_model(\n",
        "    # Caution: Most of `bert_config` is ignored if you pass a hub url.\n",
        "    bert_config=bert_config, hub_module_url=hub_url_bert, num_labels=2)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "xMJX3wV0_v7I"
      },
      "source": [
        "The one downside to loading this model from TFHub is that the structure of internal keras layers is not restored. So it's more difficult to inspect or modify the model. The `TransformerEncoder` model is now a single layer:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1521
      "execution_count": null,
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "pD71dnvhM2QS"
      },
      "outputs": [],
      "source": [
        "tf.keras.utils.plot_model(hub_classifier, show_shapes=True, dpi=64)"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1534
      "execution_count": null,
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "nLZD-isBzNKi"
      },
      "outputs": [],
      "source": [
        "try:\n",
        "  tf.keras.utils.plot_model(hub_encoder, show_shapes=True, dpi=64)\n",
        "  assert False\n",
        "except Exception as e:\n",
        "  print(f\"{type(e).__name__}: {e}\")"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "ZxSqH0dNAgXV"
      },
      "source": [
        "\u003ca id=\"model_builder_functions\"\u003e\u003c/a\u003e\n",
        "\n",
        "### Low level model building\n",
        "\n",
        "If you need a more control over the construction of the model it's worth noting that the `classifier_model` function used earlier is really just a thin wrapper over the `nlp.modeling.networks.TransformerEncoder` and `nlp.modeling.models.BertClassifier` classes. Just remember that if you start modifying the architecture it may not be correct or possible to reload the pre-trained checkpoint so you'll need to retrain from scratch."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "0cgABEwDj06P"
      },
      "source": [
        "Build the encoder:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1575
      "execution_count": null,
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "5r_yqhBFSVEM"
      },
      "outputs": [],
      "source": [
        "transformer_config = config_dict.copy()\n",
        "\n",
        "# You need to rename a few fields to make this work:\n",
        "transformer_config['attention_dropout_rate'] = transformer_config.pop('attention_probs_dropout_prob')\n",
        "transformer_config['activation'] = tf_utils.get_activation(transformer_config.pop('hidden_act'))\n",
        "transformer_config['dropout_rate'] = transformer_config.pop('hidden_dropout_prob')\n",
        "transformer_config['initializer'] = tf.keras.initializers.TruncatedNormal(\n",
        "          stddev=transformer_config.pop('initializer_range'))\n",
        "transformer_config['max_sequence_length'] = transformer_config.pop('max_position_embeddings')\n",
        "transformer_config['num_layers'] = transformer_config.pop('num_hidden_layers')\n",
        "\n",
        "transformer_config"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1599
      "execution_count": null,
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "rIO8MI7LLijh"
      },
      "outputs": [],
      "source": [
        "manual_encoder = nlp.modeling.networks.TransformerEncoder(**transformer_config)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "4a4tFSg9krRi"
      },
      "source": [
        "Restore the weights:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1622
      "execution_count": null,
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "X6N9NEqfXJCx"
      },
      "outputs": [],
      "source": [
        "checkpoint = tf.train.Checkpoint(model=manual_encoder)\n",
        "checkpoint.restore(\n",
        "    os.path.join(gs_folder_bert, 'bert_model.ckpt')).assert_consumed()"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "1BPiPO4ykuwM"
      },
      "source": [
        "Test run it:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1647
      "execution_count": null,
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "hlVdgJKmj389"
      },
      "outputs": [],
      "source": [
        "result = manual_encoder(my_examples, training=True)\n",
        "\n",
        "print(\"Sequence output shape:\", result[0].shape)\n",
        "print(\"Pooled output shape:\", result[1].shape)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "nJMXvVgJkyBv"
      },
      "source": [
        "Wrap it in a classifier:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1673
      "execution_count": null,
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "tQX57GJ6wkAb"
      },
      "outputs": [],
      "source": [
        "manual_classifier = nlp.modeling.models.BertClassifier(\n",
        "        bert_encoder,\n",
        "        num_classes=2,\n",
        "        dropout_rate=transformer_config['dropout_rate'],\n",
        "        initializer=tf.keras.initializers.TruncatedNormal(\n",
        "          stddev=bert_config.initializer_range))"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1691
      "execution_count": null,
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "kB-nBWhQk0dS"
      },
      "outputs": [],
      "source": [
        "manual_classifier(my_examples, training=True).numpy()"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "E6AJlOSyIO1L"
      },
      "source": [
        "\u003ca id=\"optiizer_schedule\"\u003e\u003c/a\u003e\n",
        "\n",
        "### Optimizers and schedules\n",
        "\n",
        "The optimizer used to train the model was created using the `nlp.optimization.create_optimizer` function:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1718
      "execution_count": null,
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "28Dv3BPRlFTD"
      },
      "outputs": [],
      "source": [
        "optimizer = nlp.optimization.create_optimizer(\n",
        "    2e-5, num_train_steps=num_train_steps, num_warmup_steps=warmup_steps)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "LRjcHr0UlT8c"
      },
      "source": [
        "That high level wrapper sets up the learning rate schedules and the optimizer.\n",
        "\n",
        "The base learning rate schedule used here is a linear decay to zero over the training run:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1744
      "execution_count": null,
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "MHY8K6kDngQn"
      },
      "outputs": [],
      "source": [
        "epochs = 3\n",
        "batch_size = 32\n",
        "eval_batch_size = 32\n",
        "\n",
        "train_data_size = len(glue_train_labels)\n",
        "steps_per_epoch = int(train_data_size / batch_size)\n",
        "num_train_steps = steps_per_epoch * epochs"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1763
      "execution_count": null,
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "wKIcSprulu3P"
      },
      "outputs": [],
      "source": [
        "decay_schedule = tf.keras.optimizers.schedules.PolynomialDecay(\n",
        "      initial_learning_rate=2e-5,\n",
        "      decay_steps=num_train_steps,\n",
        "      end_learning_rate=0)\n",
        "\n",
        "plt.plot([decay_schedule(n) for n in range(num_train_steps)])"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "IMTC_gfAl_PZ"
      },
      "source": [
        "This, in turn is wrapped in a `WarmUp` schedule that linearly increases the learning rate to the target value over the first 10% of training:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1791
      "execution_count": null,
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "YRt3VTmBmCBY"
      },
      "outputs": [],
      "source": [
        "warmup_steps = num_train_steps * 0.1\n",
        "\n",
        "warmup_schedule = nlp.optimization.WarmUp(\n",
        "        initial_learning_rate=2e-5,\n",
        "        decay_schedule_fn=decay_schedule,\n",
        "        warmup_steps=warmup_steps)\n",
        "\n",
        "# The warmup overshoots, because it warms up to the `initial_learning_rate`\n",
        "# following the original implementation. You can set\n",
        "# `initial_learning_rate=decay_schedule(warmup_steps)` if you don't like the\n",
        "# overshoot.\n",
        "plt.plot([warmup_schedule(n) for n in range(num_train_steps)])"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "l8D9Lv3Bn740"
      },
      "source": [
        "Then create the `nlp.optimization.AdamWeightDecay` using that schedule, configured for the BERT model:"
      ]
    },
    {
      "cell_type": "code",
Mark Daoust's avatar
Mark Daoust committed
1825
      "execution_count": null,
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
      "metadata": {
        "colab": {},
        "colab_type": "code",
        "id": "2Hf2rpRXk89N"
      },
      "outputs": [],
      "source": [
        "optimizer = nlp.optimization.AdamWeightDecay(\n",
        "        learning_rate=warmup_schedule,\n",
        "        weight_decay_rate=0.01,\n",
        "        epsilon=1e-6,\n",
        "        exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias'])"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1838
1839
      ]
    }
Chen Chen's avatar
Chen Chen committed
1840
1841
1842
1843
1844
  ],
  "metadata": {
    "accelerator": "GPU",
    "colab": {
      "collapsed_sections": [],
1845
1846
1847
1848
      "name": "fine_tuning_bert.ipynb",
      "private_outputs": true,
      "provenance": [],
      "toc_visible": true
Chen Chen's avatar
Chen Chen committed
1849
1850
1851
1852
1853
1854
1855
1856
1857
    },
    "kernelspec": {
      "display_name": "Python 3",
      "name": "python3"
    }
  },
  "nbformat": 4,
  "nbformat_minor": 0
}