train.py 6.08 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Trains a generator on CIFAR data."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function


import tensorflow as tf

import data_provider
import networks


tfgan = tf.contrib.gan
flags = tf.flags

flags.DEFINE_integer('batch_size', 32, 'The number of images in each batch.')

flags.DEFINE_string('master', '', 'Name of the TensorFlow master to use.')

flags.DEFINE_string('train_log_dir', '/tmp/cifar/',
                    'Directory where to write event logs.')

flags.DEFINE_string('dataset_dir', None, 'Location of data.')

flags.DEFINE_integer('max_number_of_steps', 1000000,
                     'The maximum number of gradient steps.')

flags.DEFINE_integer(
    'ps_tasks', 0,
    'The number of parameter servers. If the value is 0, then the parameters '
    'are handled locally by the worker.')

flags.DEFINE_integer(
    'task', 0,
    'The Task ID. This value is used when training with multiple workers to '
    'identify each worker.')

flags.DEFINE_boolean(
    'conditional', False,
    'If `True`, set up a conditional GAN. If False, it is unconditional.')

# Sync replicas flags.
flags.DEFINE_boolean(
    'use_sync_replicas', True,
    'If `True`, use sync replicas. Otherwise use async.')

flags.DEFINE_integer(
    'worker_replicas', 10,
    'The number of gradients to collect before updating params. Only used '
    'with sync replicas.')

flags.DEFINE_integer(
    'backup_workers', 1,
    'Number of workers to be kept as backup in the sync replicas case.')


FLAGS = flags.FLAGS


def main(_):
  if not tf.gfile.Exists(FLAGS.train_log_dir):
    tf.gfile.MakeDirs(FLAGS.train_log_dir)

  with tf.device(tf.train.replica_device_setter(FLAGS.ps_tasks)):
    # Force all input processing onto CPU in order to reserve the GPU for
    # the forward inference and back-propagation.
    with tf.name_scope('inputs'):
      with tf.device('/cpu:0'):
        images, one_hot_labels, _, _ = data_provider.provide_data(
            FLAGS.batch_size, FLAGS.dataset_dir)

    # Define the GANModel tuple.
    noise = tf.random_normal([FLAGS.batch_size, 64])
    if FLAGS.conditional:
      generator_fn = networks.conditional_generator
      discriminator_fn = networks.conditional_discriminator
      generator_inputs = (noise, one_hot_labels)
    else:
      generator_fn = networks.generator
      discriminator_fn = networks.discriminator
      generator_inputs = noise
    gan_model = tfgan.gan_model(
        generator_fn,
        discriminator_fn,
        real_data=images,
        generator_inputs=generator_inputs)
    tfgan.eval.add_gan_model_image_summaries(gan_model)

    # Get the GANLoss tuple. Use the selected GAN loss functions.
    # (joelshor): Put this block in `with tf.name_scope('loss'):` when
    # cl/171610946 goes into the opensource release.
    gan_loss = tfgan.gan_loss(gan_model,
                              gradient_penalty_weight=1.0,
                              add_summaries=True)

    # Get the GANTrain ops using the custom optimizers and optional
    # discriminator weight clipping.
    with tf.name_scope('train'):
      gen_lr, dis_lr = _learning_rate()
      gen_opt, dis_opt = _optimizer(gen_lr, dis_lr, FLAGS.use_sync_replicas)
      train_ops = tfgan.gan_train_ops(
          gan_model,
          gan_loss,
          generator_optimizer=gen_opt,
          discriminator_optimizer=dis_opt,
          summarize_gradients=True,
          colocate_gradients_with_ops=True,
          aggregation_method=tf.AggregationMethod.EXPERIMENTAL_ACCUMULATE_N)
      tf.summary.scalar('generator_lr', gen_lr)
      tf.summary.scalar('discriminator_lr', dis_lr)

    # Run the alternating training loop. Skip it if no steps should be taken
    # (used for graph construction tests).
    sync_hooks = ([gen_opt.make_session_run_hook(FLAGS.task == 0),
                   dis_opt.make_session_run_hook(FLAGS.task == 0)]
                  if FLAGS.use_sync_replicas else [])
    status_message = tf.string_join(
        ['Starting train step: ',
         tf.as_string(tf.train.get_or_create_global_step())],
        name='status_message')
    if FLAGS.max_number_of_steps == 0: return
    tfgan.gan_train(
        train_ops,
        hooks=(
            [tf.train.StopAtStepHook(num_steps=FLAGS.max_number_of_steps),
             tf.train.LoggingTensorHook([status_message], every_n_iter=10)] +
            sync_hooks),
        logdir=FLAGS.train_log_dir,
        master=FLAGS.master,
        is_chief=FLAGS.task == 0)


def _learning_rate():
  generator_lr = tf.train.exponential_decay(
      learning_rate=0.0001,
      global_step=tf.train.get_or_create_global_step(),
      decay_steps=100000,
      decay_rate=0.9,
      staircase=True)
  discriminator_lr = 0.001
  return generator_lr, discriminator_lr


def _optimizer(gen_lr, dis_lr, use_sync_replicas):
  """Get an optimizer, that's optionally synchronous."""
  generator_opt = tf.train.RMSPropOptimizer(gen_lr, decay=.9, momentum=0.1)
  discriminator_opt = tf.train.RMSPropOptimizer(dis_lr, decay=.95, momentum=0.1)

  def _make_sync(opt):
    return tf.train.SyncReplicasOptimizer(
        opt,
        replicas_to_aggregate=FLAGS.worker_replicas-FLAGS.backup_workers,
        total_num_replicas=FLAGS.worker_replicas)
  if use_sync_replicas:
    generator_opt = _make_sync(generator_opt)
    discriminator_opt = _make_sync(discriminator_opt)

  return generator_opt, discriminator_opt


if __name__ == '__main__':
  tf.logging.set_verbosity(tf.logging.INFO)
  tf.app.run()