common_test.py 3.59 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""Tests for the common module."""
16
17
18
from __future__ import absolute_import
from __future__ import print_function

19
# pylint: disable=g-bad-import-order
20
21
from mock import Mock
import numpy as np
22
import tensorflow as tf
23

24
from absl import logging
25
from tensorflow.python.platform import googletest
26
from official.utils.misc import keras_utils
27
from official.vision.image_classification import common
28
29
30


class KerasCommonTests(tf.test.TestCase):
31
  """Tests for common."""
32
33
34
35
36
37
38
39
40

  @classmethod
  def setUpClass(cls):  # pylint: disable=invalid-name
    super(KerasCommonTests, cls).setUpClass()

  def test_build_stats(self):

    history = self._build_history(1.145, cat_accuracy=.99988)
    eval_output = self._build_eval_output(.56432111, 5.990)
41
    th = keras_utils.TimeHistory(128, 100)
42

43
44
45
    th.timestamp_log = [keras_utils.BatchTimestamp(0, 1),
                        keras_utils.BatchTimestamp(1, 2),
                        keras_utils.BatchTimestamp(2, 3)]
46
    th.train_finish_time = 12345
47
    stats = common.build_stats(history, eval_output, [th])
48
49
50
51
52
53
54

    self.assertEqual(1.145, stats['loss'])
    self.assertEqual(.99988, stats['training_accuracy_top_1'])

    self.assertEqual(.56432111, stats['accuracy_top_1'])
    self.assertEqual(5.990, stats['eval_loss'])

55
    self.assertEqual(3, stats['step_timestamp_log'][2].timestamp)
56
57
    self.assertEqual(12345, stats['train_finish_time'])

58
59
60
61
  def test_build_stats_sparse(self):

    history = self._build_history(1.145, cat_accuracy_sparse=.99988)
    eval_output = self._build_eval_output(.928, 1.9844)
62
    stats = common.build_stats(history, eval_output, None)
63
64
65
66
67
68
69

    self.assertEqual(1.145, stats['loss'])
    self.assertEqual(.99988, stats['training_accuracy_top_1'])

    self.assertEqual(.928, stats['accuracy_top_1'])
    self.assertEqual(1.9844, stats['eval_loss'])

70
  def test_time_history(self):
71
    th = keras_utils.TimeHistory(batch_size=128, log_steps=3)
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

    th.on_train_begin()
    th.on_batch_begin(0)
    th.on_batch_end(0)
    th.on_batch_begin(1)
    th.on_batch_end(1)
    th.on_batch_begin(2)
    th.on_batch_end(2)
    th.on_batch_begin(3)
    th.on_batch_end(3)
    th.on_batch_begin(4)
    th.on_batch_end(4)
    th.on_batch_begin(5)
    th.on_batch_end(5)
    th.on_batch_begin(6)
    th.on_batch_end(6)
    th.on_train_end()

90
    self.assertEqual(3, len(th.timestamp_log))
91

92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
  def _build_history(self, loss, cat_accuracy=None,
                     cat_accuracy_sparse=None):
    history_p = Mock()
    history = {}
    history_p.history = history
    history['loss'] = [np.float64(loss)]
    if cat_accuracy:
      history['categorical_accuracy'] = [np.float64(cat_accuracy)]
    if cat_accuracy_sparse:
      history['sparse_categorical_accuracy'] = [np.float64(cat_accuracy_sparse)]

    return history_p

  def _build_eval_output(self, top_1, eval_loss):
    eval_output = [np.float64(eval_loss), np.float64(top_1)]
    return eval_output
108
109

if __name__ == '__main__':
110
  logging.set_verbosity(logging.ERROR)
111
  googletest.main()