video_classification.py 13.8 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Video classification configuration definition."""
import dataclasses
Rui Qian's avatar
Rui Qian committed
17
from typing import Optional, Tuple, Union
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from official.core import config_definitions as cfg
from official.core import exp_factory
from official.modeling import hyperparams
from official.modeling import optimization
from official.vision.configs import backbones_3d
from official.vision.configs import common


@dataclasses.dataclass
class DataConfig(cfg.DataConfig):
  """The base configuration for building datasets."""
  name: Optional[str] = None
  file_type: Optional[str] = 'tfrecord'
  compressed_input: bool = False
  split: str = 'train'
  variant_name: Optional[str] = None
  feature_shape: Tuple[int, ...] = (64, 224, 224, 3)
  temporal_stride: int = 1
  random_stride_range: int = 0
  num_test_clips: int = 1
  num_test_crops: int = 1
  num_classes: int = -1
  num_examples: int = -1
  global_batch_size: int = 128
  data_format: str = 'channels_last'
  dtype: str = 'float32'
44
  label_dtype: str = 'int32'
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
45
46
47
  one_hot: bool = True
  shuffle_buffer_size: int = 64
  cache: bool = False
Rui Qian's avatar
Rui Qian committed
48
  input_path: Union[str, cfg.base_config.Config] = ''
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
49
50
51
52
  is_training: bool = True
  cycle_length: int = 10
  drop_remainder: bool = True
  min_image_size: int = 256
53
  zero_centering_image: bool = False
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
54
55
56
57
58
59
60
61
  is_multilabel: bool = False
  output_audio: bool = False
  audio_feature: str = ''
  audio_feature_shape: Tuple[int, ...] = (-1,)
  aug_min_aspect_ratio: float = 0.5
  aug_max_aspect_ratio: float = 2.0
  aug_min_area_ratio: float = 0.49
  aug_max_area_ratio: float = 1.0
62
63
64
  aug_type: Optional[
      common.Augmentation] = None  # AutoAugment and RandAugment.
  mixup_and_cutmix: Optional[common.MixupAndCutmix] = None
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
  image_field_key: str = 'image/encoded'
  label_field_key: str = 'clip/label/index'


def kinetics400(is_training):
  """Generated Kinectics 400 dataset configs."""
  return DataConfig(
      name='kinetics400',
      num_classes=400,
      is_training=is_training,
      split='train' if is_training else 'valid',
      drop_remainder=is_training,
      num_examples=215570 if is_training else 17706,
      feature_shape=(64, 224, 224, 3) if is_training else (250, 224, 224, 3))


def kinetics600(is_training):
  """Generated Kinectics 600 dataset configs."""
  return DataConfig(
      name='kinetics600',
      num_classes=600,
      is_training=is_training,
      split='train' if is_training else 'valid',
      drop_remainder=is_training,
      num_examples=366016 if is_training else 27780,
      feature_shape=(64, 224, 224, 3) if is_training else (250, 224, 224, 3))


def kinetics700(is_training):
  """Generated Kinectics 600 dataset configs."""
  return DataConfig(
      name='kinetics700',
      num_classes=700,
      is_training=is_training,
      split='train' if is_training else 'valid',
      drop_remainder=is_training,
      num_examples=522883 if is_training else 33441,
      feature_shape=(64, 224, 224, 3) if is_training else (250, 224, 224, 3))


def kinetics700_2020(is_training):
  """Generated Kinectics 600 dataset configs."""
  return DataConfig(
      name='kinetics700',
      num_classes=700,
      is_training=is_training,
      split='train' if is_training else 'valid',
      drop_remainder=is_training,
      num_examples=535982 if is_training else 33640,
      feature_shape=(64, 224, 224, 3) if is_training else (250, 224, 224, 3))


@dataclasses.dataclass
class VideoClassificationModel(hyperparams.Config):
  """The model config."""
  model_type: str = 'video_classification'
  backbone: backbones_3d.Backbone3D = backbones_3d.Backbone3D(
      type='resnet_3d', resnet_3d=backbones_3d.ResNet3D50())
  norm_activation: common.NormActivation = common.NormActivation(
      use_sync_bn=False)
  dropout_rate: float = 0.2
  aggregate_endpoints: bool = False
  require_endpoints: Optional[Tuple[str, ...]] = None


@dataclasses.dataclass
class Losses(hyperparams.Config):
  one_hot: bool = True
  label_smoothing: float = 0.0
  l2_weight_decay: float = 0.0


@dataclasses.dataclass
class Metrics(hyperparams.Config):
  use_per_class_recall: bool = False


@dataclasses.dataclass
class VideoClassificationTask(cfg.TaskConfig):
  """The task config."""
  model: VideoClassificationModel = VideoClassificationModel()
  train_data: DataConfig = DataConfig(is_training=True, drop_remainder=True)
  validation_data: DataConfig = DataConfig(
      is_training=False, drop_remainder=False)
  losses: Losses = Losses()
  metrics: Metrics = Metrics()
  init_checkpoint: Optional[str] = None
  init_checkpoint_modules: str = 'all'  # all or backbone
153
  freeze_backbone: bool = False
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
  # Spatial Partitioning fields.
  train_input_partition_dims: Optional[Tuple[int, ...]] = None
  eval_input_partition_dims: Optional[Tuple[int, ...]] = None


def add_trainer(experiment: cfg.ExperimentConfig,
                train_batch_size: int,
                eval_batch_size: int,
                learning_rate: float = 1.6,
                train_epochs: int = 44,
                warmup_epochs: int = 5):
  """Add and config a trainer to the experiment config."""
  if experiment.task.train_data.num_examples <= 0:
    raise ValueError('Wrong train dataset size {!r}'.format(
        experiment.task.train_data))
  if experiment.task.validation_data.num_examples <= 0:
    raise ValueError('Wrong validation dataset size {!r}'.format(
        experiment.task.validation_data))
  experiment.task.train_data.global_batch_size = train_batch_size
  experiment.task.validation_data.global_batch_size = eval_batch_size
  steps_per_epoch = experiment.task.train_data.num_examples // train_batch_size
  experiment.trainer = cfg.TrainerConfig(
      steps_per_loop=steps_per_epoch,
      summary_interval=steps_per_epoch,
      checkpoint_interval=steps_per_epoch,
      train_steps=train_epochs * steps_per_epoch,
      validation_steps=experiment.task.validation_data.num_examples //
      eval_batch_size,
      validation_interval=steps_per_epoch,
      optimizer_config=optimization.OptimizationConfig({
          'optimizer': {
              'type': 'sgd',
              'sgd': {
                  'momentum': 0.9,
                  'nesterov': True,
              }
          },
          'learning_rate': {
              'type': 'cosine',
              'cosine': {
                  'initial_learning_rate': learning_rate,
                  'decay_steps': train_epochs * steps_per_epoch,
              }
          },
          'warmup': {
              'type': 'linear',
              'linear': {
                  'warmup_steps': warmup_epochs * steps_per_epoch,
                  'warmup_learning_rate': 0
              }
          }
      }))
  return experiment


@exp_factory.register_config_factory('video_classification')
def video_classification() -> cfg.ExperimentConfig:
  """Video classification general."""
  return cfg.ExperimentConfig(
      runtime=cfg.RuntimeConfig(mixed_precision_dtype='bfloat16'),
      task=VideoClassificationTask(),
      trainer=cfg.TrainerConfig(),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None',
          'task.train_data.num_classes == task.validation_data.num_classes',
      ])


@exp_factory.register_config_factory('video_classification_ucf101')
def video_classification_ucf101() -> cfg.ExperimentConfig:
  """Video classification on UCF-101 with resnet."""
  train_dataset = DataConfig(
      name='ucf101',
      num_classes=101,
      is_training=True,
      split='train',
      drop_remainder=True,
      num_examples=9537,
      temporal_stride=2,
      feature_shape=(32, 224, 224, 3))
  train_dataset.tfds_name = 'ucf101'
  train_dataset.tfds_split = 'train'
  validation_dataset = DataConfig(
      name='ucf101',
      num_classes=101,
      is_training=True,
      split='test',
      drop_remainder=False,
      num_examples=3783,
      temporal_stride=2,
      feature_shape=(32, 224, 224, 3))
  validation_dataset.tfds_name = 'ucf101'
  validation_dataset.tfds_split = 'test'
  task = VideoClassificationTask(
      model=VideoClassificationModel(
          backbone=backbones_3d.Backbone3D(
              type='resnet_3d', resnet_3d=backbones_3d.ResNet3D50()),
          norm_activation=common.NormActivation(
              norm_momentum=0.9, norm_epsilon=1e-5, use_sync_bn=False)),
      losses=Losses(l2_weight_decay=1e-4),
      train_data=train_dataset,
      validation_data=validation_dataset)
  config = cfg.ExperimentConfig(
      runtime=cfg.RuntimeConfig(mixed_precision_dtype='bfloat16'),
      task=task,
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None',
          'task.train_data.num_classes == task.validation_data.num_classes',
      ])
  add_trainer(
      config,
      train_batch_size=64,
      eval_batch_size=16,
      learning_rate=0.8,
      train_epochs=100)
  return config


@exp_factory.register_config_factory('video_classification_kinetics400')
def video_classification_kinetics400() -> cfg.ExperimentConfig:
  """Video classification on Kinectics 400 with resnet."""
  train_dataset = kinetics400(is_training=True)
  validation_dataset = kinetics400(is_training=False)
  task = VideoClassificationTask(
      model=VideoClassificationModel(
          backbone=backbones_3d.Backbone3D(
              type='resnet_3d', resnet_3d=backbones_3d.ResNet3D50()),
          norm_activation=common.NormActivation(
              norm_momentum=0.9, norm_epsilon=1e-5, use_sync_bn=False)),
      losses=Losses(l2_weight_decay=1e-4),
      train_data=train_dataset,
      validation_data=validation_dataset)
  config = cfg.ExperimentConfig(
      runtime=cfg.RuntimeConfig(mixed_precision_dtype='bfloat16'),
      task=task,
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None',
          'task.train_data.num_classes == task.validation_data.num_classes',
      ])
  add_trainer(config, train_batch_size=1024, eval_batch_size=64)
  return config


@exp_factory.register_config_factory('video_classification_kinetics600')
def video_classification_kinetics600() -> cfg.ExperimentConfig:
  """Video classification on Kinectics 600 with resnet."""
  train_dataset = kinetics600(is_training=True)
  validation_dataset = kinetics600(is_training=False)
  task = VideoClassificationTask(
      model=VideoClassificationModel(
          backbone=backbones_3d.Backbone3D(
              type='resnet_3d', resnet_3d=backbones_3d.ResNet3D50()),
          norm_activation=common.NormActivation(
              norm_momentum=0.9, norm_epsilon=1e-5, use_sync_bn=False)),
      losses=Losses(l2_weight_decay=1e-4),
      train_data=train_dataset,
      validation_data=validation_dataset)
  config = cfg.ExperimentConfig(
      runtime=cfg.RuntimeConfig(mixed_precision_dtype='bfloat16'),
      task=task,
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None',
          'task.train_data.num_classes == task.validation_data.num_classes',
      ])
  add_trainer(config, train_batch_size=1024, eval_batch_size=64)
  return config


@exp_factory.register_config_factory('video_classification_kinetics700')
def video_classification_kinetics700() -> cfg.ExperimentConfig:
  """Video classification on Kinectics 700 with resnet."""
  train_dataset = kinetics700(is_training=True)
  validation_dataset = kinetics700(is_training=False)
  task = VideoClassificationTask(
      model=VideoClassificationModel(
          backbone=backbones_3d.Backbone3D(
              type='resnet_3d', resnet_3d=backbones_3d.ResNet3D50()),
          norm_activation=common.NormActivation(
              norm_momentum=0.9, norm_epsilon=1e-5, use_sync_bn=False)),
      losses=Losses(l2_weight_decay=1e-4),
      train_data=train_dataset,
      validation_data=validation_dataset)
  config = cfg.ExperimentConfig(
      runtime=cfg.RuntimeConfig(mixed_precision_dtype='bfloat16'),
      task=task,
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None',
          'task.train_data.num_classes == task.validation_data.num_classes',
      ])
  add_trainer(config, train_batch_size=1024, eval_batch_size=64)
  return config


@exp_factory.register_config_factory('video_classification_kinetics700_2020')
def video_classification_kinetics700_2020() -> cfg.ExperimentConfig:
  """Video classification on Kinectics 700 2020 with resnet."""
  train_dataset = kinetics700_2020(is_training=True)
  validation_dataset = kinetics700_2020(is_training=False)
  task = VideoClassificationTask(
      model=VideoClassificationModel(
          backbone=backbones_3d.Backbone3D(
              type='resnet_3d', resnet_3d=backbones_3d.ResNet3D50()),
          norm_activation=common.NormActivation(
              norm_momentum=0.9, norm_epsilon=1e-5, use_sync_bn=False)),
      losses=Losses(l2_weight_decay=1e-4),
      train_data=train_dataset,
      validation_data=validation_dataset)
  config = cfg.ExperimentConfig(
      runtime=cfg.RuntimeConfig(mixed_precision_dtype='bfloat16'),
      task=task,
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None',
          'task.train_data.num_classes == task.validation_data.num_classes',
      ])
  add_trainer(config, train_batch_size=1024, eval_batch_size=64)
  return config