export_inference_graph.py 4.39 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
r"""Saves out a GraphDef containing the architecture of the model.

To use it, run something like this, with a model name defined by slim:

bazel build tensorflow_models/slim:export_inference_graph
bazel-bin/tensorflow_models/slim/export_inference_graph \
--model_name=inception_v3 --output_file=/tmp/inception_v3_inf_graph.pb

If you then want to use the resulting model with your own or pretrained
checkpoints as part of a mobile model, you can run freeze_graph to get a graph
def with the variables inlined as constants using:

bazel build tensorflow/python/tools:freeze_graph
bazel-bin/tensorflow/python/tools/freeze_graph \
--input_graph=/tmp/inception_v3_inf_graph.pb \
--input_checkpoint=/tmp/checkpoints/inception_v3.ckpt \
--input_binary=true --output_graph=/tmp/frozen_inception_v3.pb \
--output_node_names=InceptionV3/Predictions/Reshape_1

The output node names will vary depending on the model, but you can inspect and
estimate them using the summarize_graph tool:

bazel build tensorflow/tools/graph_transforms:summarize_graph
bazel-bin/tensorflow/tools/graph_transforms/summarize_graph \
--in_graph=/tmp/inception_v3_inf_graph.pb

To run the resulting graph in C++, you can look at the label_image sample code:

bazel build tensorflow/examples/label_image:label_image
bazel-bin/tensorflow/examples/label_image/label_image \
--image=${HOME}/Pictures/flowers.jpg \
--input_layer=input \
--output_layer=InceptionV3/Predictions/Reshape_1 \
--graph=/tmp/frozen_inception_v3.pb \
--labels=/tmp/imagenet_slim_labels.txt \
--input_mean=0 \
51
--input_std=255
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf

from tensorflow.python.platform import gfile
from datasets import dataset_factory
from nets import nets_factory


slim = tf.contrib.slim

tf.app.flags.DEFINE_string(
    'model_name', 'inception_v3', 'The name of the architecture to save.')

tf.app.flags.DEFINE_boolean(
    'is_training', False,
    'Whether to save out a training-focused version of the model.')

tf.app.flags.DEFINE_integer(
    'default_image_size', 224,
    'The image size to use if the model does not define it.')

tf.app.flags.DEFINE_string('dataset_name', 'imagenet',
                           'The name of the dataset to use with the model.')

tf.app.flags.DEFINE_integer(
    'labels_offset', 0,
    'An offset for the labels in the dataset. This flag is primarily used to '
    'evaluate the VGG and ResNet architectures which do not use a background '
    'class for the ImageNet dataset.')

tf.app.flags.DEFINE_string(
    'output_file', '', 'Where to save the resulting file to.')

tf.app.flags.DEFINE_string(
    'dataset_dir', '', 'Directory to save intermediate dataset files to')

FLAGS = tf.app.flags.FLAGS


def main(_):
  if not FLAGS.output_file:
    raise ValueError('You must supply the path to save to with --output_file')
  tf.logging.set_verbosity(tf.logging.INFO)
  with tf.Graph().as_default() as graph:
102
    dataset = dataset_factory.get_dataset(FLAGS.dataset_name, 'train',
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
                                          FLAGS.dataset_dir)
    network_fn = nets_factory.get_network_fn(
        FLAGS.model_name,
        num_classes=(dataset.num_classes - FLAGS.labels_offset),
        is_training=FLAGS.is_training)
    if hasattr(network_fn, 'default_image_size'):
      image_size = network_fn.default_image_size
    else:
      image_size = FLAGS.default_image_size
    placeholder = tf.placeholder(name='input', dtype=tf.float32,
                                 shape=[1, image_size, image_size, 3])
    network_fn(placeholder)
    graph_def = graph.as_graph_def()
    with gfile.GFile(FLAGS.output_file, 'wb') as f:
      f.write(graph_def.SerializeToString())


if __name__ == '__main__':
  tf.app.run()