ffn_layer.py 3.17 KB
Newer Older
Katherine Wu's avatar
Katherine Wu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Implementation of fully connected network."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf


class FeedFowardNetwork(tf.layers.Layer):
  """Fully connected feedforward network."""

27
  def __init__(self, hidden_size, filter_size, relu_dropout, train, allow_pad):
Katherine Wu's avatar
Katherine Wu committed
28
29
30
31
32
    super(FeedFowardNetwork, self).__init__()
    self.hidden_size = hidden_size
    self.filter_size = filter_size
    self.relu_dropout = relu_dropout
    self.train = train
33
    self.allow_pad = allow_pad
Katherine Wu's avatar
Katherine Wu committed
34
35
36
37
38
39
40
41
42
43
44
45

    self.filter_dense_layer = tf.layers.Dense(
        filter_size, use_bias=True, activation=tf.nn.relu, name="filter_layer")
    self.output_dense_layer = tf.layers.Dense(
        hidden_size, use_bias=True, name="output_layer")

  def call(self, x, padding=None):
    """Return outputs of the feedforward network.

    Args:
      x: tensor with shape [batch_size, length, hidden_size]
      padding: (optional) If set, the padding values are temporarily removed
46
47
48
        from x (provided self.allow_pad is set). The padding values are placed
        back in the output tensor in the same locations.
        shape [batch_size, length]
Katherine Wu's avatar
Katherine Wu committed
49
50
51
52
53

    Returns:
      Output of the feedforward network.
      tensor with shape [batch_size, length, hidden_size]
    """
54
55
    padding = None if not self.allow_pad else padding

Katherine Wu's avatar
Katherine Wu committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
    # Retrieve dynamically known shapes
    batch_size = tf.shape(x)[0]
    length = tf.shape(x)[1]

    if padding is not None:
      with tf.name_scope("remove_padding"):
        # Flatten padding to [batch_size*length]
        pad_mask = tf.reshape(padding, [-1])

        nonpad_ids = tf.to_int32(tf.where(pad_mask < 1e-9))

        # Reshape x to [batch_size*length, hidden_size] to remove padding
        x = tf.reshape(x, [-1, self.hidden_size])
        x = tf.gather_nd(x, indices=nonpad_ids)

        # Reshape x from 2 dimensions to 3 dimensions.
        x.set_shape([None, self.hidden_size])
        x = tf.expand_dims(x, axis=0)

    output = self.filter_dense_layer(x)
    if self.train:
      output = tf.nn.dropout(output, 1.0 - self.relu_dropout)
    output = self.output_dense_layer(output)

    if padding is not None:
      with tf.name_scope("re_add_padding"):
        output = tf.squeeze(output, axis=0)
        output = tf.scatter_nd(
            indices=nonpad_ids,
            updates=output,
            shape=[batch_size * length, self.hidden_size]
        )
        output = tf.reshape(output, [batch_size, length, self.hidden_size])
    return output