README.md 6.88 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
![Logo](https://storage.googleapis.com/model_garden_artifacts/TF_Model_Garden.png)
2

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
3
# TensorFlow Official Models
4

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
5
6
7
8
The TensorFlow official models are a collection of models
that use TensorFlow’s high-level APIs.
They are intended to be well-maintained, tested, and kept up to date
with the latest TensorFlow API.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
9

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
10
11
12
13
They should also be reasonably optimized for fast performance while still
being easy to read.
These models are used as end-to-end tests, ensuring that the models run
with the same or improved speed and performance with each new TensorFlow build.
14

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
15
## More models to come!
16

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
17
18
19
The team is actively developing new models.
In the near future, we will add:

20
21
* State-of-the-art language understanding models.
* State-of-the-art image classification models.
bhack's avatar
bhack committed
22
* State-of-the-art object detection and instance segmentation models.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
23
24

## Table of Contents
25

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
26
27
28
29
30
31
32
33
34
- [Models and Implementations](#models-and-implementations)
  * [Computer Vision](#computer-vision)
    + [Image Classification](#image-classification)
    + [Object Detection and Segmentation](#object-detection-and-segmentation)
  * [Natural Language Processing](#natural-language-processing)
  * [Recommendation](#recommendation)
- [How to get started with the official models](#how-to-get-started-with-the-official-models)

## Models and Implementations
Hongkun Yu's avatar
Hongkun Yu committed
35

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
36
### Computer Vision
Hongkun Yu's avatar
Hongkun Yu committed
37

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
38
39
40
41
42
#### Image Classification

| Model | Reference (Paper) |
|-------|-------------------|
| [MNIST](vision/image_classification) | A basic model to classify digits from the [MNIST dataset](http://yann.lecun.com/exdb/mnist/) |
43
| [ResNet](vision/beta/MODEL_GARDEN.md) | [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) |
44
| [ResNet-RS](vision/beta/MODEL_GARDEN.md) | [Revisiting ResNets: Improved Training and Scaling Strategies](https://arxiv.org/abs/2103.07579) |
45
| [EfficientNet](vision/image_classification) | [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) |
46

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
47
#### Object Detection and Segmentation
48

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
49
50
| Model | Reference (Paper) |
|-------|-------------------|
51
52
| [RetinaNet](vision/beta/MODEL_GARDEN.md) | [Focal Loss for Dense Object Detection](https://arxiv.org/abs/1708.02002) |
| [Mask R-CNN](vision/beta/MODEL_GARDEN.md) | [Mask R-CNN](https://arxiv.org/abs/1703.06870) |
53
| [ShapeMask](vision/detection) | [ShapeMask: Learning to Segment Novel Objects by Refining Shape Priors](https://arxiv.org/abs/1904.03239) |
54
| [SpineNet](vision/beta/MODEL_GARDEN.md) | [SpineNet: Learning Scale-Permuted Backbone for Recognition and Localization](https://arxiv.org/abs/1912.05027) |
Xianzhi Du's avatar
Xianzhi Du committed
55
| [Cascade RCNN-RS and RetinaNet-RS](vision/beta/MODEL_GARDEN.md) | [Simple Training Strategies and Model Scaling for Object Detection](https://arxiv.org/abs/2107.00057)|
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
56
57

### Natural Language Processing
58

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
59
60
61
62
63
64
65
| Model | Reference (Paper) |
|-------|-------------------|
| [ALBERT (A Lite BERT)](nlp/albert) | [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942) |
| [BERT (Bidirectional Encoder Representations from Transformers)](nlp/bert) | [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) |
| [NHNet (News Headline generation model)](nlp/nhnet) | [Generating Representative Headlines for News Stories](https://arxiv.org/abs/2001.09386) |
| [Transformer](nlp/transformer) | [Attention Is All You Need](https://arxiv.org/abs/1706.03762) |
| [XLNet](nlp/xlnet) | [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) |
66
| [MobileBERT](nlp/projects/mobilebert) | [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) |
67

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
68
69
### Recommendation

70
71
72
73
74
Model                            | Reference (Paper)
-------------------------------- | -----------------
[DLRM](recommendation/ranking)   | [Deep Learning Recommendation Model for Personalization and Recommendation Systems](https://arxiv.org/abs/1906.00091)
[DCN v2](recommendation/ranking) | [Improved Deep & Cross Network and Practical Lessons for Web-scale Learning to Rank Systems](https://arxiv.org/abs/2008.13535)
[NCF](recommendation)            | [Neural Collaborative Filtering](https://arxiv.org/abs/1708.05031)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
75
76

## How to get started with the official models
Hongkun Yu's avatar
Hongkun Yu committed
77

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
78
79
80
81
82
83
84
85
* The models in the master branch are developed using TensorFlow 2,
and they target the TensorFlow [nightly binaries](https://github.com/tensorflow/tensorflow#installation)
built from the
[master branch of TensorFlow](https://github.com/tensorflow/tensorflow/tree/master).
* The stable versions targeting releases of TensorFlow are available
as tagged branches or [downloadable releases](https://github.com/tensorflow/models/releases).
* Model repository version numbers match the target TensorFlow release,
such that
Hongkun Yu's avatar
Hongkun Yu committed
86
[release v2.5.0](https://github.com/tensorflow/models/releases/tag/v2.5.0)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
87
are compatible with
Hongkun Yu's avatar
Hongkun Yu committed
88
[TensorFlow v2.5.0](https://github.com/tensorflow/tensorflow/releases/tag/v2.5.0).
Hongkun Yu's avatar
Hongkun Yu committed
89

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
90
Please follow the below steps before running models in this repository.
91

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
92
### Requirements
93

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
94
* The latest TensorFlow Model Garden release and TensorFlow 2
Hongkun Yu's avatar
Hongkun Yu committed
95
  * If you are on a version of TensorFlow earlier than 2.2, please
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
96
upgrade your TensorFlow to [the latest TensorFlow 2](https://www.tensorflow.org/install/).
Hongkun Yu's avatar
Hongkun Yu committed
97

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
98
99
100
```shell
pip3 install tf-nightly
```
Hongkun Yu's avatar
Hongkun Yu committed
101

Hongkun Yu's avatar
Hongkun Yu committed
102
103
104
105
106
* Python 3.7+

Our integration tests run with Python 3.7. Although Python 3.6 should work, we
don't recommend earlier versions.

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
107
### Installation
Hongkun Yu's avatar
Hongkun Yu committed
108

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
109
#### Method 1: Install the TensorFlow Model Garden pip package
Hongkun Yu's avatar
Hongkun Yu committed
110

111
112
**tf-models-official** is the stable Model Garden package.
pip will install all models and dependencies automatically.
113

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
114
```shell
115
pip install tf-models-official
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
116
```
117

Chen Chen's avatar
Chen Chen committed
118
119
120
121
122
123
If you are using nlp packages, please also install **tensorflow-text**:

```shell
pip install tensorflow-text
```

Jared T Nielsen's avatar
Jared T Nielsen committed
124
Please check out our [example](colab/fine_tuning_bert.ipynb)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
125
to learn how to use a PIP package.
126

127
128
129
130
131
132
133
134
Note that **tf-models-official** may not include the latest changes in this
github repo. To include latest changes, you may install **tf-models-nightly**,
which is the nightly Model Garden package created daily automatically.

```shell
pip install tf-models-nightly
```

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
135
#### Method 2: Clone the source
136

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
137
1. Clone the GitHub repository:
138

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
139
140
141
```shell
git clone https://github.com/tensorflow/models.git
```
142

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
143
2. Add the top-level ***/models*** folder to the Python path.
144

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
145
146
147
```shell
export PYTHONPATH=$PYTHONPATH:/path/to/models
```
148

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
149
If you are using a Colab notebook, please set the Python path with os.environ.
150

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
151
152
153
154
```python
import os
os.environ['PYTHONPATH'] += ":/path/to/models"
```
155

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
156
3. Install other dependencies
157

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
158
159
160
```shell
pip3 install --user -r official/requirements.txt
```
Hongkun Yu's avatar
Hongkun Yu committed
161

Chen Chen's avatar
Chen Chen committed
162
163
164
165
166
167
168
Finally, if you are using nlp packages, please also install
**tensorflow-text-nightly**:

```shell
pip3 install tensorflow-text-nightly
```

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
169
## Contributions
170

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
171
If you want to contribute, please review the [contribution guidelines](https://github.com/tensorflow/models/wiki/How-to-contribute).