"sgl-kernel/csrc/vscode:/vscode.git/clone" did not exist on "12ef7e3bc3a322f20cede3e2bfc68205c475cdec"
model_params.py 2.43 KB
Newer Older
Katherine Wu's avatar
Katherine Wu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Defines Transformer model parameters."""


18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
BASE_PARAMS = dict(
    # Input params
    default_batch_size=2048,  # Maximum number of tokens per batch of examples.
    default_batch_size_tpu=32768,
    max_length=256,  # Maximum number of tokens per example.

    # Model params
    initializer_gain=1.0,  # Used in trainable variable initialization.
    vocab_size=33708,  # Number of tokens defined in the vocabulary file.
    hidden_size=512,  # Model dimension in the hidden layers.
    num_hidden_layers=6,  # Number of layers in the encoder and decoder stacks.
    num_heads=8,  # Number of heads to use in multi-headed attention.
    filter_size=2048,  # Inner layer dimension in the feedforward network.

    # Dropout values (only used when training)
    layer_postprocess_dropout=0.1,
    attention_dropout=0.1,
    relu_dropout=0.1,

    # Training params
    label_smoothing=0.1,
    learning_rate=2.0,
    learning_rate_decay_rate=1.0,
    learning_rate_warmup_steps=16000,

    # Optimizer params
    optimizer_adam_beta1=0.9,
    optimizer_adam_beta2=0.997,
    optimizer_adam_epsilon=1e-09,

    # Default prediction params
    extra_decode_length=50,
    beam_size=4,
    alpha=0.6,  # used to calculate length normalization in beam search

    # TPU specific parameters
    use_tpu=False,
    static_batch=False,
    allow_ffn_pad=True,
)

BIG_PARAMS = dict(BASE_PARAMS)
BIG_PARAMS.update(dict(
    default_batch_size=4096,

    # default batch size is smaller than for BASE_PARAMS due to memory limits.
    default_batch_size_tpu=16384,

    hidden_size=1024,
    filter_size=4096,
    num_heads=16,
))

TINY_PARAMS = dict(BASE_PARAMS)
TINY_PARAMS.update(dict(
    default_batch_size=1024,
    default_batch_size_tpu=1024,
    hidden_size=32,
    num_heads=4,
    filter_size=256,
))