resnet.py 24.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Karmel Allison's avatar
Karmel Allison committed
15
16
"""Contains definitions for the preactivation form of Residual Networks
(also known as ResNet v2).
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Residual networks (ResNets) were originally proposed in:
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
    Deep Residual Learning for Image Recognition. arXiv:1512.03385

The full preactivation 'v2' ResNet variant implemented in this module was
introduced by:
[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
    Identity Mappings in Deep Residual Networks. arXiv: 1603.05027

The key difference of the full preactivation 'v2' variant compared to the
'v1' variant in [1] is the use of batch normalization before every weight layer
rather than after.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

Karmel Allison's avatar
Karmel Allison committed
36
37
38
import argparse
import os

39
40
41
42
43
44
import tensorflow as tf

_BATCH_NORM_DECAY = 0.997
_BATCH_NORM_EPSILON = 1e-5


45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
################################################################################
# Functions for input processing.
################################################################################
def process_record_dataset(dataset, is_training, batch_size, shuffle_buffer,
                           parse_record_fn, num_epochs=1, num_parallel_calls=1):
  """Given a Dataset with raw records, parse each record into images and labels,
  and return an iterator over the records.
  Args:
    dataset: A Dataset representing raw records
    is_training: A boolean denoting whether the input is for training.
    batch_size: The number of samples per batch.
    shuffle_buffer: The buffer size to use when shuffling records. A larger
      value results in better randomness, but smaller values reduce startup
      time and use less memory.
    parse_record_fn: A function that takes a raw record and returns the
      corresponding (image, label) pair.
    num_epochs: The number of epochs to repeat the dataset.
    num_parallel_calls: The number of records that are processed in parallel.
      This can be optimized per data set but for generally homogeneous data
      sets, should be approximately the number of available CPU cores.

  Returns:
    Dataset of (image, label) pairs ready for iteration.
  """
  # We prefetch a batch at a time, This can help smooth out the time taken to
  # load input files as we go through shuffling and processing.
  dataset = dataset.prefetch(buffer_size=batch_size)
  if is_training:
    # Shuffle the records. Note that we shuffle before repeating to ensure
    # that the shuffling respects epoch boundaries.
    dataset = dataset.shuffle(buffer_size=shuffle_buffer)

  # If we are training over multiple epochs before evaluating, repeat the
  # dataset for the appropriate number of epochs.
  dataset = dataset.repeat(num_epochs)

  # Parse the raw records into images and labels
  dataset = dataset.map(lambda value: parse_record_fn(value, is_training),
                        num_parallel_calls=num_parallel_calls)

  dataset = dataset.batch(batch_size)

  # Operations between the final prefetch and the get_next call to the iterator
  # will happen synchronously during run time. We prefetch here again to
  # background all of the above processing work and keep it out of the
  # critical training path.
  dataset = dataset.prefetch(1)

  return dataset


Karmel Allison's avatar
Karmel Allison committed
96
97
98
################################################################################
# Functions building the ResNet model.
################################################################################
99
def batch_norm_relu(inputs, training, data_format):
100
  """Performs a batch normalization followed by a ReLU."""
101
102
  # We set fused=True for a significant performance boost. See
  # https://www.tensorflow.org/performance/performance_guide#common_fused_ops
103
104
105
  inputs = tf.layers.batch_normalization(
      inputs=inputs, axis=1 if data_format == 'channels_first' else 3,
      momentum=_BATCH_NORM_DECAY, epsilon=_BATCH_NORM_EPSILON, center=True,
106
      scale=True, training=training, fused=True)
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
  inputs = tf.nn.relu(inputs)
  return inputs


def fixed_padding(inputs, kernel_size, data_format):
  """Pads the input along the spatial dimensions independently of input size.

  Args:
    inputs: A tensor of size [batch, channels, height_in, width_in] or
      [batch, height_in, width_in, channels] depending on data_format.
    kernel_size: The kernel to be used in the conv2d or max_pool2d operation.
                 Should be a positive integer.
    data_format: The input format ('channels_last' or 'channels_first').

  Returns:
    A tensor with the same format as the input with the data either intact
    (if kernel_size == 1) or padded (if kernel_size > 1).
  """
  pad_total = kernel_size - 1
  pad_beg = pad_total // 2
  pad_end = pad_total - pad_beg

  if data_format == 'channels_first':
    padded_inputs = tf.pad(inputs, [[0, 0], [0, 0],
                                    [pad_beg, pad_end], [pad_beg, pad_end]])
  else:
    padded_inputs = tf.pad(inputs, [[0, 0], [pad_beg, pad_end],
                                    [pad_beg, pad_end], [0, 0]])
  return padded_inputs


def conv2d_fixed_padding(inputs, filters, kernel_size, strides, data_format):
139
140
141
  """Strided 2-D convolution with explicit padding."""
  # The padding is consistent and is based only on `kernel_size`, not on the
  # dimensions of `inputs` (as opposed to using `tf.layers.conv2d` alone).
142
143
144
145
146
147
148
149
150
151
  if strides > 1:
    inputs = fixed_padding(inputs, kernel_size, data_format)

  return tf.layers.conv2d(
      inputs=inputs, filters=filters, kernel_size=kernel_size, strides=strides,
      padding=('SAME' if strides == 1 else 'VALID'), use_bias=False,
      kernel_initializer=tf.variance_scaling_initializer(),
      data_format=data_format)


152
def building_block(inputs, filters, training, projection_shortcut, strides,
153
154
155
156
157
158
159
                   data_format):
  """Standard building block for residual networks with BN before convolutions.

  Args:
    inputs: A tensor of size [batch, channels, height_in, width_in] or
      [batch, height_in, width_in, channels] depending on data_format.
    filters: The number of filters for the convolutions.
160
    training: A Boolean for whether the model is in training or inference
161
      mode. Needed for batch normalization.
162
163
    projection_shortcut: The function to use for projection shortcuts
      (typically a 1x1 convolution when downsampling the input).
164
165
166
167
168
169
170
171
    strides: The block's stride. If greater than 1, this block will ultimately
      downsample the input.
    data_format: The input format ('channels_last' or 'channels_first').

  Returns:
    The output tensor of the block.
  """
  shortcut = inputs
172
  inputs = batch_norm_relu(inputs, training, data_format)
173
174
175
176
177
178
179
180
181
182

  # The projection shortcut should come after the first batch norm and ReLU
  # since it performs a 1x1 convolution.
  if projection_shortcut is not None:
    shortcut = projection_shortcut(inputs)

  inputs = conv2d_fixed_padding(
      inputs=inputs, filters=filters, kernel_size=3, strides=strides,
      data_format=data_format)

183
  inputs = batch_norm_relu(inputs, training, data_format)
184
185
186
187
188
189
190
  inputs = conv2d_fixed_padding(
      inputs=inputs, filters=filters, kernel_size=3, strides=1,
      data_format=data_format)

  return inputs + shortcut


191
def bottleneck_block(inputs, filters, training, projection_shortcut,
192
193
194
195
196
197
                     strides, data_format):
  """Bottleneck block variant for residual networks with BN before convolutions.

  Args:
    inputs: A tensor of size [batch, channels, height_in, width_in] or
      [batch, height_in, width_in, channels] depending on data_format.
198
199
200
    filters: The number of filters for the first two convolutions. Note
      that the third and final convolution will use 4 times as many filters.
    training: A Boolean for whether the model is in training or inference
201
      mode. Needed for batch normalization.
202
203
    projection_shortcut: The function to use for projection shortcuts
      (typically a 1x1 convolution when downsampling the input).
204
205
206
207
208
209
210
211
    strides: The block's stride. If greater than 1, this block will ultimately
      downsample the input.
    data_format: The input format ('channels_last' or 'channels_first').

  Returns:
    The output tensor of the block.
  """
  shortcut = inputs
212
  inputs = batch_norm_relu(inputs, training, data_format)
213
214
215
216
217
218
219
220
221
222

  # The projection shortcut should come after the first batch norm and ReLU
  # since it performs a 1x1 convolution.
  if projection_shortcut is not None:
    shortcut = projection_shortcut(inputs)

  inputs = conv2d_fixed_padding(
      inputs=inputs, filters=filters, kernel_size=1, strides=1,
      data_format=data_format)

223
  inputs = batch_norm_relu(inputs, training, data_format)
224
225
226
227
  inputs = conv2d_fixed_padding(
      inputs=inputs, filters=filters, kernel_size=3, strides=strides,
      data_format=data_format)

228
  inputs = batch_norm_relu(inputs, training, data_format)
229
230
231
232
233
234
235
  inputs = conv2d_fixed_padding(
      inputs=inputs, filters=4 * filters, kernel_size=1, strides=1,
      data_format=data_format)

  return inputs + shortcut


236
def block_layer(inputs, filters, block_fn, blocks, strides, training, name,
237
238
239
240
241
242
243
244
245
246
247
248
                data_format):
  """Creates one layer of blocks for the ResNet model.

  Args:
    inputs: A tensor of size [batch, channels, height_in, width_in] or
      [batch, height_in, width_in, channels] depending on data_format.
    filters: The number of filters for the first convolution of the layer.
    block_fn: The block to use within the model, either `building_block` or
      `bottleneck_block`.
    blocks: The number of blocks contained in the layer.
    strides: The stride to use for the first convolution of the layer. If
      greater than 1, this layer will ultimately downsample the input.
249
    training: Either True or False, whether we are currently training the
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
      model. Needed for batch norm.
    name: A string name for the tensor output of the block layer.
    data_format: The input format ('channels_last' or 'channels_first').

  Returns:
    The output tensor of the block layer.
  """
  # Bottleneck blocks end with 4x the number of filters as they start with
  filters_out = 4 * filters if block_fn is bottleneck_block else filters

  def projection_shortcut(inputs):
    return conv2d_fixed_padding(
        inputs=inputs, filters=filters_out, kernel_size=1, strides=strides,
        data_format=data_format)

  # Only the first block per block_layer uses projection_shortcut and strides
266
  inputs = block_fn(inputs, filters, training, projection_shortcut, strides,
267
268
                    data_format)

269
  for _ in range(1, blocks):
270
    inputs = block_fn(inputs, filters, training, None, 1, data_format)
271
272
273
274

  return tf.identity(inputs, name)


275
276
class Model(object):
  """Base class for building the Resnet v2 Model.
277
278
  """

279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
  def __init__(self, resnet_size, num_classes, num_filters, kernel_size,
               conv_stride, first_pool_size, first_pool_stride,
               second_pool_size, second_pool_stride, block_fn, block_sizes,
               block_strides, final_size, data_format=None):
    """Creates a model for classifying an image.

    Args:
      resnet_size: A single integer for the size of the ResNet model.
      num_classes: The number of classes used as labels.
      num_filters: The number of filters to use for the first block layer
        of the model. This number is then doubled for each subsequent block
        layer.
      kernel_size: The kernel size to use for convolution.
      conv_stride: stride size for the initial convolutional layer
      first_pool_size: Pool size to be used for the first pooling layer.
        If none, the first pooling layer is skipped.
      first_pool_stride: stride size for the first pooling layer. Not used
        if first_pool_size is None.
      second_pool_size: Pool size to be used for the second pooling layer.
      second_pool_stride: stride size for the final pooling layer
      block_fn: Which block layer function should be used? Pass in one of
        the two functions defined above: building_block or bottleneck_block
      block_sizes: A list containing n values, where n is the number of sets of
        block layers desired. Each value should be the number of blocks in the
        i-th set.
      block_strides: List of integers representing the desired stride size for
        each of the sets of block layers. Should be same length as block_sizes.
      final_size: The expected size of the model after the second pooling.
      data_format: Input format ('channels_last', 'channels_first', or None).
        If set to None, the format is dependent on whether a GPU is available.
    """
    self.resnet_size = resnet_size

    if not data_format:
      data_format = (
          'channels_first' if tf.test.is_built_with_cuda() else 'channels_last')

    self.data_format = data_format
    self.num_classes = num_classes
    self.num_filters = num_filters
    self.kernel_size = kernel_size
    self.conv_stride = conv_stride
    self.first_pool_size = first_pool_size
    self.first_pool_stride = first_pool_stride
    self.second_pool_size = second_pool_size
    self.second_pool_stride = second_pool_stride
    self.block_fn = block_fn
    self.block_sizes = block_sizes
    self.block_strides = block_strides
    self.final_size = final_size

  def __call__(self, inputs, training):
    """Add operations to classify a batch of input images.

    Args:
      inputs: A Tensor representing a batch of input images.
      training: A boolean. Set to True to add operations required only when
        training the classifier.

    Returns:
      A logits Tensor with shape [<batch_size>, self.num_classes].
    """

    if self.data_format == 'channels_first':
343
344
      # Convert the inputs from channels_last (NHWC) to channels_first (NCHW).
      # This provides a large performance boost on GPU. See
345
      # https://www.tensorflow.org/performance/performance_guide#data_formats
346
347
348
      inputs = tf.transpose(inputs, [0, 3, 1, 2])

    inputs = conv2d_fixed_padding(
349
350
        inputs=inputs, filters=self.num_filters, kernel_size=self.kernel_size,
        strides=self.conv_stride, data_format=self.data_format)
351
352
    inputs = tf.identity(inputs, 'initial_conv')

353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
    if self.first_pool_size:
      inputs = tf.layers.max_pooling2d(
          inputs=inputs, pool_size=self.first_pool_size,
          strides=self.first_pool_stride, padding='SAME',
          data_format=self.data_format)
      inputs = tf.identity(inputs, 'initial_max_pool')

    for i, num_blocks in enumerate(self.block_sizes):
      num_filters = self.num_filters * (2**i)
      inputs = block_layer(
          inputs=inputs, filters=num_filters, block_fn=self.block_fn,
          blocks=num_blocks, strides=self.block_strides[i],
          training=training, name='block_layer{}'.format(i + 1),
          data_format=self.data_format)

    inputs = batch_norm_relu(inputs, training, self.data_format)
369
    inputs = tf.layers.average_pooling2d(
370
371
372
        inputs=inputs, pool_size=self.second_pool_size,
        strides=self.second_pool_stride, padding='VALID',
        data_format=self.data_format)
373
374
    inputs = tf.identity(inputs, 'final_avg_pool')

375
376
    inputs = tf.reshape(inputs, [-1, self.final_size])
    inputs = tf.layers.dense(inputs=inputs, units=self.num_classes)
377
378
    inputs = tf.identity(inputs, 'final_dense')
    return inputs
Karmel Allison's avatar
Karmel Allison committed
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547


################################################################################
# Functions for running training/eval/validation loops for the model.
################################################################################
def learning_rate_with_decay(
    batch_size, batch_denom, num_images, boundary_epochs, decay_rates):
  """Get a learning rate that decays step-wise as training progresses.

  Args:
    batch_size: the number of examples processed in each training batch.
    batch_denom: this value will be used to scale the base learning rate.
      `0.1 * batch size` is divided by this number, such that when
      batch_denom == batch_size, the initial learning rate will be 0.1.
    num_images: total number of images that will be used for training.
    boundary_epochs: list of ints representing the epochs at which we
      decay the learning rate.
    decay_rates: list of floats representing the decay rates to be used
      for scaling the learning rate. Should be the same length as
      boundary_epochs.

  Returns:
    Returns a function that takes a single argument - the number of batches
    trained so far (global_step)- and returns the learning rate to be used
    for training the next batch.
  """
  initial_learning_rate = 0.1 * batch_size / batch_denom
  batches_per_epoch = num_images / batch_size

  # Multiply the learning rate by 0.1 at 100, 150, and 200 epochs.
  boundaries = [int(batches_per_epoch * epoch) for epoch in boundary_epochs]
  vals = [initial_learning_rate * decay for decay in decay_rates]

  def learning_rate_fn(global_step):
    global_step = tf.cast(global_step, tf.int32)
    return tf.train.piecewise_constant(global_step, boundaries, vals)

  return learning_rate_fn


def resnet_model_fn(features, labels, mode, model_class,
                    resnet_size, weight_decay, learning_rate_fn, momentum,
                    data_format, loss_filter_fn=None):
  """Shared functionality for different resnet model_fns.

  Initializes the ResnetModel representing the model layers
  and uses that model to build the necessary EstimatorSpecs for
  the `mode` in question. For training, this means building losses,
  the optimizer, and the train op that get passed into the EstimatorSpec.
  For evaluation and prediction, the EstimatorSpec is returned without
  a train op, but with the necessary parameters for the given mode.

  Args:
    features: tensor representing input images
    labels: tensor representing class labels for all input images
    mode: current estimator mode; should be one of
      `tf.estimator.ModeKeys.TRAIN`, `EVALUATE`, `PREDICT`
    model_class: a class representing a TensorFlow model that has a __call__
      function. We assume here that this is a subclass of ResnetModel.
    resnet_size: A single integer for the size of the ResNet model.
    weight_decay: weight decay loss rate used to regularize learned variables.
    learning_rate_fn: function that returns the current learning rate given
      the current global_step
    momentum: momentum term used for optimization
    data_format: Input format ('channels_last', 'channels_first', or None).
      If set to None, the format is dependent on whether a GPU is available.
    loss_filter_fn: function that takes a string variable name and returns
      True if the var should be included in loss calculation, and False
      otherwise. If None, batch_normalization variables will be excluded
      from the loss.
  Returns:
    EstimatorSpec parameterized according to the input params and the
    current mode.
  """

  # Generate a summary node for the images
  tf.summary.image('images', features, max_outputs=6)

  model = model_class(resnet_size, data_format)
  logits = model(features, mode == tf.estimator.ModeKeys.TRAIN)

  predictions = {
      'classes': tf.argmax(logits, axis=1),
      'probabilities': tf.nn.softmax(logits, name='softmax_tensor')
  }

  if mode == tf.estimator.ModeKeys.PREDICT:
    return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)

  # Calculate loss, which includes softmax cross entropy and L2 regularization.
  cross_entropy = tf.losses.softmax_cross_entropy(
      logits=logits, onehot_labels=labels)

  # Create a tensor named cross_entropy for logging purposes.
  tf.identity(cross_entropy, name='cross_entropy')
  tf.summary.scalar('cross_entropy', cross_entropy)

  # If no loss_filter_fn is passed, assume we want the default behavior,
  # which is that batch_normalization variables are excluded from loss.
  if not loss_filter_fn:
    def loss_filter_fn(name):
      return 'batch_normalization' not in name

  # Add weight decay to the loss.
  loss = cross_entropy + weight_decay * tf.add_n(
      [tf.nn.l2_loss(v) for v in tf.trainable_variables()
       if loss_filter_fn(v.name)])

  if mode == tf.estimator.ModeKeys.TRAIN:
    global_step = tf.train.get_or_create_global_step()

    learning_rate = learning_rate_fn(global_step)

    # Create a tensor named learning_rate for logging purposes
    tf.identity(learning_rate, name='learning_rate')
    tf.summary.scalar('learning_rate', learning_rate)

    optimizer = tf.train.MomentumOptimizer(
        learning_rate=learning_rate,
        momentum=momentum)

    # Batch norm requires update ops to be added as a dependency to train_op
    update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
    with tf.control_dependencies(update_ops):
      train_op = optimizer.minimize(loss, global_step)
  else:
    train_op = None

  accuracy = tf.metrics.accuracy(
      tf.argmax(labels, axis=1), predictions['classes'])
  metrics = {'accuracy': accuracy}

  # Create a tensor named train_accuracy for logging purposes
  tf.identity(accuracy[1], name='train_accuracy')
  tf.summary.scalar('train_accuracy', accuracy[1])

  return tf.estimator.EstimatorSpec(
      mode=mode,
      predictions=predictions,
      loss=loss,
      train_op=train_op,
      eval_metric_ops=metrics)


def resnet_main(flags, model_function, input_function):
  # Using the Winograd non-fused algorithms provides a small performance boost.
  os.environ['TF_ENABLE_WINOGRAD_NONFUSED'] = '1'

  # Set up a RunConfig to only save checkpoints once per training cycle.
  run_config = tf.estimator.RunConfig().replace(save_checkpoints_secs=1e9)
  classifier = tf.estimator.Estimator(
      model_fn=model_function, model_dir=flags.model_dir, config=run_config,
      params={
          'resnet_size': flags.resnet_size,
          'data_format': flags.data_format,
          'batch_size': flags.batch_size,
      })

  for _ in range(flags.train_epochs // flags.epochs_per_eval):
    tensors_to_log = {
        'learning_rate': 'learning_rate',
        'cross_entropy': 'cross_entropy',
        'train_accuracy': 'train_accuracy'
    }

    logging_hook = tf.train.LoggingTensorHook(
        tensors=tensors_to_log, every_n_iter=100)

    print('Starting a training cycle.')
548
549
550
551
552
553

    def input_fn_train():
      return input_function(True, flags.data_dir, flags.batch_size,
                            flags.epochs_per_eval, flags.num_parallel_calls)

    classifier.train(input_fn=input_fn_train, hooks=[logging_hook])
Karmel Allison's avatar
Karmel Allison committed
554
555
556

    print('Starting to evaluate.')
    # Evaluate the model and print results
557
558
559
560
561
    def input_fn_eval():
      return input_function(False, flags.data_dir, flags.batch_size,
                            1, flags.num_parallel_calls)

    eval_results = classifier.evaluate(input_fn=input_fn_eval)
Karmel Allison's avatar
Karmel Allison committed
562
563
564
565
566
567
568
569
570
571
572
573
574
    print(eval_results)


class ResnetArgParser(argparse.ArgumentParser):
  """Arguments for configuring and running a Resnet Model.
  """

  def __init__(self, resnet_size_choices=None):
    super(ResnetArgParser, self).__init__()
    self.add_argument(
        '--data_dir', type=str, default='/tmp/resnet_data',
        help='The directory where the input data is stored.')

575
576
577
578
579
580
581
    self.add_argument(
        '--num_parallel_calls', type=int, default=5,
        help='The number of records that are processed in parallel '
        'during input processing. This can be optimized per data set but '
        'for generally homogeneous data sets, should be approximately the '
        'number of available CPU cores.')

Karmel Allison's avatar
Karmel Allison committed
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
    self.add_argument(
        '--model_dir', type=str, default='/tmp/resnet_model',
        help='The directory where the model will be stored.')

    self.add_argument(
        '--resnet_size', type=int, default=50,
        choices=resnet_size_choices,
        help='The size of the ResNet model to use.')

    self.add_argument(
        '--train_epochs', type=int, default=100,
        help='The number of epochs to use for training.')

    self.add_argument(
        '--epochs_per_eval', type=int, default=1,
        help='The number of training epochs to run between evaluations.')

    self.add_argument(
        '--batch_size', type=int, default=32,
        help='Batch size for training and evaluation.')

    self.add_argument(
        '--data_format', type=str, default=None,
        choices=['channels_first', 'channels_last'],
        help='A flag to override the data format used in the model. '
             'channels_first provides a performance boost on GPU but '
             'is not always compatible with CPU. If left unspecified, '
             'the data format will be chosen automatically based on '
             'whether TensorFlow was built for CPU or GPU.')